Metamath Proof Explorer


Theorem smonoord

Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord (except that the case M = N must be excluded). Duplicate of monoords ? (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses smonoord.0 φM
smonoord.1 φNM+1
smonoord.2 φkMNFk
smonoord.3 φkMN1Fk<Fk+1
Assertion smonoord φFM<FN

Proof

Step Hyp Ref Expression
1 smonoord.0 φM
2 smonoord.1 φNM+1
3 smonoord.2 φkMNFk
4 smonoord.3 φkMN1Fk<Fk+1
5 eluzfz2 NM+1NM+1N
6 2 5 syl φNM+1N
7 eleq1 x=M+1xM+1NM+1M+1N
8 fveq2 x=M+1Fx=FM+1
9 8 breq2d x=M+1FM<FxFM<FM+1
10 7 9 imbi12d x=M+1xM+1NFM<FxM+1M+1NFM<FM+1
11 10 imbi2d x=M+1φxM+1NFM<FxφM+1M+1NFM<FM+1
12 eleq1 x=nxM+1NnM+1N
13 fveq2 x=nFx=Fn
14 13 breq2d x=nFM<FxFM<Fn
15 12 14 imbi12d x=nxM+1NFM<FxnM+1NFM<Fn
16 15 imbi2d x=nφxM+1NFM<FxφnM+1NFM<Fn
17 eleq1 x=n+1xM+1Nn+1M+1N
18 fveq2 x=n+1Fx=Fn+1
19 18 breq2d x=n+1FM<FxFM<Fn+1
20 17 19 imbi12d x=n+1xM+1NFM<Fxn+1M+1NFM<Fn+1
21 20 imbi2d x=n+1φxM+1NFM<Fxφn+1M+1NFM<Fn+1
22 eleq1 x=NxM+1NNM+1N
23 fveq2 x=NFx=FN
24 23 breq2d x=NFM<FxFM<FN
25 22 24 imbi12d x=NxM+1NFM<FxNM+1NFM<FN
26 25 imbi2d x=NφxM+1NFM<FxφNM+1NFM<FN
27 eluzp1m1 MNM+1N1M
28 1 2 27 syl2anc φN1M
29 eluzfz1 N1MMMN1
30 28 29 syl φMMN1
31 4 ralrimiva φkMN1Fk<Fk+1
32 fveq2 k=MFk=FM
33 fvoveq1 k=MFk+1=FM+1
34 32 33 breq12d k=MFk<Fk+1FM<FM+1
35 34 rspcv MMN1kMN1Fk<Fk+1FM<FM+1
36 30 31 35 sylc φFM<FM+1
37 36 a1d φM+1M+1NFM<FM+1
38 37 a1i M+1φM+1M+1NFM<FM+1
39 peano2fzr nM+1n+1M+1NnM+1N
40 39 adantll φnM+1n+1M+1NnM+1N
41 40 ex φnM+1n+1M+1NnM+1N
42 41 imim1d φnM+1nM+1NFM<Fnn+1M+1NFM<Fn
43 peano2uzr MnM+1nM
44 43 ex MnM+1nM
45 44 1 syl11 nM+1φnM
46 45 adantr nM+1n+1M+1NφnM
47 46 impcom φnM+1n+1M+1NnM
48 eluzelz nM+1n
49 48 adantr nM+1n+1M+1Nn
50 49 adantl φnM+1n+1M+1Nn
51 elfzuz3 n+1M+1NNn+1
52 51 ad2antll φnM+1n+1M+1NNn+1
53 eluzp1m1 nNn+1N1n
54 50 52 53 syl2anc φnM+1n+1M+1NN1n
55 elfzuzb nMN1nMN1n
56 47 54 55 sylanbrc φnM+1n+1M+1NnMN1
57 31 adantr φnM+1n+1M+1NkMN1Fk<Fk+1
58 fveq2 k=nFk=Fn
59 fvoveq1 k=nFk+1=Fn+1
60 58 59 breq12d k=nFk<Fk+1Fn<Fn+1
61 60 rspcv nMN1kMN1Fk<Fk+1Fn<Fn+1
62 56 57 61 sylc φnM+1n+1M+1NFn<Fn+1
63 zre MM
64 63 lep1d MMM+1
65 1 64 jccir φMMM+1
66 eluzuzle MMM+1NM+1NM
67 65 2 66 sylc φNM
68 eluzfz1 NMMMN
69 67 68 syl φMMN
70 3 ralrimiva φkMNFk
71 32 eleq1d k=MFkFM
72 71 rspcv MMNkMNFkFM
73 69 70 72 sylc φFM
74 73 adantr φnM+1n+1M+1NFM
75 fzp1ss MM+1NMN
76 1 75 syl φM+1NMN
77 76 sseld φn+1M+1Nn+1MN
78 77 com12 n+1M+1Nφn+1MN
79 78 adantl nM+1n+1M+1Nφn+1MN
80 79 impcom φnM+1n+1M+1Nn+1MN
81 peano2fzr nMn+1MNnMN
82 47 80 81 syl2anc φnM+1n+1M+1NnMN
83 70 adantr φnM+1n+1M+1NkMNFk
84 58 eleq1d k=nFkFn
85 84 rspcv nMNkMNFkFn
86 82 83 85 sylc φnM+1n+1M+1NFn
87 fveq2 k=n+1Fk=Fn+1
88 87 eleq1d k=n+1FkFn+1
89 88 rspcv n+1MNkMNFkFn+1
90 80 83 89 sylc φnM+1n+1M+1NFn+1
91 lttr FMFnFn+1FM<FnFn<Fn+1FM<Fn+1
92 74 86 90 91 syl3anc φnM+1n+1M+1NFM<FnFn<Fn+1FM<Fn+1
93 62 92 mpan2d φnM+1n+1M+1NFM<FnFM<Fn+1
94 42 93 animpimp2impd nM+1φnM+1NFM<Fnφn+1M+1NFM<Fn+1
95 11 16 21 26 38 94 uzind4 NM+1φNM+1NFM<FN
96 2 95 mpcom φNM+1NFM<FN
97 6 96 mpd φFM<FN