Metamath Proof Explorer


Theorem smonoord

Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord (except that the case M = N must be excluded). Duplicate of monoords ? (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses smonoord.0 ( 𝜑𝑀 ∈ ℤ )
smonoord.1 ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
smonoord.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
smonoord.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
Assertion smonoord ( 𝜑 → ( 𝐹𝑀 ) < ( 𝐹𝑁 ) )

Proof

Step Hyp Ref Expression
1 smonoord.0 ( 𝜑𝑀 ∈ ℤ )
2 smonoord.1 ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
3 smonoord.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
4 smonoord.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
5 eluzfz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )
6 2 5 syl ( 𝜑𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )
7 eleq1 ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
8 fveq2 ( 𝑥 = ( 𝑀 + 1 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) )
9 8 breq2d ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) )
10 7 9 imbi12d ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ↔ ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) )
11 10 imbi2d ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) ) )
12 eleq1 ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
13 fveq2 ( 𝑥 = 𝑛 → ( 𝐹𝑥 ) = ( 𝐹𝑛 ) )
14 13 breq2d ( 𝑥 = 𝑛 → ( ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ) )
15 12 14 imbi12d ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ↔ ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ) ) )
16 15 imbi2d ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ) ) ) )
17 eleq1 ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
18 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
19 18 breq2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
20 17 19 imbi12d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) )
21 20 imbi2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) )
22 eleq1 ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
23 fveq2 ( 𝑥 = 𝑁 → ( 𝐹𝑥 ) = ( 𝐹𝑁 ) )
24 23 breq2d ( 𝑥 = 𝑁 → ( ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) < ( 𝐹𝑁 ) ) )
25 22 24 imbi12d ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ↔ ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑁 ) ) ) )
26 25 imbi2d ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑁 ) ) ) ) )
27 eluzp1m1 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑀 ) )
28 1 2 27 syl2anc ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ𝑀 ) )
29 eluzfz1 ( ( 𝑁 − 1 ) ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) )
30 28 29 syl ( 𝜑𝑀 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) )
31 4 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
32 fveq2 ( 𝑘 = 𝑀 → ( 𝐹𝑘 ) = ( 𝐹𝑀 ) )
33 fvoveq1 ( 𝑘 = 𝑀 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) )
34 32 33 breq12d ( 𝑘 = 𝑀 → ( ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) )
35 34 rspcv ( 𝑀 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) )
36 30 31 35 sylc ( 𝜑 → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) )
37 36 a1d ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) )
38 37 a1i ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) )
39 peano2fzr ( ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )
40 39 adantll ( ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )
41 40 ex ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
42 41 imim1d ( ( 𝜑𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ) ) )
43 peano2uzr ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑛 ∈ ( ℤ𝑀 ) )
44 43 ex ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑛 ∈ ( ℤ𝑀 ) ) )
45 44 1 syl11 ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → ( 𝜑𝑛 ∈ ( ℤ𝑀 ) ) )
46 45 adantr ( ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝜑𝑛 ∈ ( ℤ𝑀 ) ) )
47 46 impcom ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ𝑀 ) )
48 eluzelz ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑛 ∈ ℤ )
49 48 adantr ( ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ℤ )
50 49 adantl ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ℤ )
51 elfzuz3 ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑁 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) )
52 51 ad2antll ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) )
53 eluzp1m1 ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑛 ) )
54 50 52 53 syl2anc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑛 ) )
55 elfzuzb ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑁 − 1 ) ∈ ( ℤ𝑛 ) ) )
56 47 54 55 sylanbrc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) )
57 31 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
58 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
59 fvoveq1 ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
60 58 59 breq12d ( 𝑘 = 𝑛 → ( ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
61 60 rspcv ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
62 56 57 61 sylc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
63 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
64 63 lep1d ( 𝑀 ∈ ℤ → 𝑀 ≤ ( 𝑀 + 1 ) )
65 1 64 jccir ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑀 ≤ ( 𝑀 + 1 ) ) )
66 eluzuzle ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≤ ( 𝑀 + 1 ) ) → ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ( ℤ𝑀 ) ) )
67 65 2 66 sylc ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
68 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
69 67 68 syl ( 𝜑𝑀 ∈ ( 𝑀 ... 𝑁 ) )
70 3 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ )
71 32 eleq1d ( 𝑘 = 𝑀 → ( ( 𝐹𝑘 ) ∈ ℝ ↔ ( 𝐹𝑀 ) ∈ ℝ ) )
72 71 rspcv ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ → ( 𝐹𝑀 ) ∈ ℝ ) )
73 69 70 72 sylc ( 𝜑 → ( 𝐹𝑀 ) ∈ ℝ )
74 73 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹𝑀 ) ∈ ℝ )
75 fzp1ss ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) )
76 1 75 syl ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) )
77 76 sseld ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) )
78 77 com12 ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝜑 → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) )
79 78 adantl ( ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝜑 → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) )
80 79 impcom ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) )
81 peano2fzr ( ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) )
82 47 80 81 syl2anc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) )
83 70 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ )
84 58 eleq1d ( 𝑘 = 𝑛 → ( ( 𝐹𝑘 ) ∈ ℝ ↔ ( 𝐹𝑛 ) ∈ ℝ ) )
85 84 rspcv ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ → ( 𝐹𝑛 ) ∈ ℝ ) )
86 82 83 85 sylc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹𝑛 ) ∈ ℝ )
87 fveq2 ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
88 87 eleq1d ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) )
89 88 rspcv ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) )
90 80 83 89 sylc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
91 lttr ( ( ( 𝐹𝑀 ) ∈ ℝ ∧ ( 𝐹𝑛 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) → ( ( ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ∧ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
92 74 86 90 91 syl3anc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ∧ ( 𝐹𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
93 62 92 mpan2d ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝐹𝑀 ) < ( 𝐹𝑛 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
94 42 93 animpimp2impd ( 𝑛 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → ( ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) )
95 11 16 21 26 38 94 uzind4 ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑁 ) ) ) )
96 2 95 mpcom ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹𝑀 ) < ( 𝐹𝑁 ) ) )
97 6 96 mpd ( 𝜑 → ( 𝐹𝑀 ) < ( 𝐹𝑁 ) )