| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smonoord.0 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smonoord.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 3 |  | smonoord.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 4 |  | smonoord.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 5 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝜑  →  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 14 | 13 | breq2d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 15 | 12 14 | imbi12d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝜑  →  ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 17 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 19 | 18 | breq2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 20 | 17 19 | imbi12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 24 | 23 | breq2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 25 | 22 24 | imbi12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 26 | 25 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝜑  →  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑁 ) ) ) ) ) | 
						
							| 27 |  | eluzp1m1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 28 | 1 2 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 29 |  | eluzfz1 | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 31 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 33 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  =  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 34 | 32 33 | breq12d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ↔  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 35 | 34 | rspcv | ⊢ ( 𝑀  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 36 | 30 31 35 | sylc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 37 | 36 | a1d | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝑀  +  1 )  ∈  ℤ  →  ( 𝜑  →  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 39 |  | peano2fzr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 40 | 39 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 41 | 40 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 42 | 41 | imim1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 43 |  | peano2uzr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 45 | 44 1 | syl11 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝜑  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝜑  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 47 | 46 | impcom | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 48 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 51 |  | elfzuz3 | ⊢ ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 52 | 51 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 53 |  | eluzp1m1 | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 54 | 50 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 55 |  | elfzuzb | ⊢ ( 𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑛 ) ) ) | 
						
							| 56 | 47 54 55 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 57 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ∀ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 59 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 60 | 58 59 | breq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ↔  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 61 | 60 | rspcv | ⊢ ( 𝑛  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) ( 𝐹 ‘ 𝑘 )  <  ( 𝐹 ‘ ( 𝑘  +  1 ) )  →  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 62 | 56 57 61 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 63 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 64 | 63 | lep1d | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ≤  ( 𝑀  +  1 ) ) | 
						
							| 65 | 1 64 | jccir | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℤ  ∧  𝑀  ≤  ( 𝑀  +  1 ) ) ) | 
						
							| 66 |  | eluzuzle | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≤  ( 𝑀  +  1 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 67 | 65 2 66 | sylc | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 68 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 70 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 71 | 32 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) ) | 
						
							| 72 | 71 | rspcv | ⊢ ( 𝑀  ∈  ( 𝑀 ... 𝑁 )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) ) | 
						
							| 73 | 69 70 72 | sylc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 75 |  | fzp1ss | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 76 | 1 75 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 77 | 76 | sseld | ⊢ ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 78 | 77 | com12 | ⊢ ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝜑  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝜑  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 80 | 79 | impcom | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 81 |  | peano2fzr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑛  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 82 | 47 80 81 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 83 | 70 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 84 | 58 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) ) | 
						
							| 85 | 84 | rspcv | ⊢ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) ) | 
						
							| 86 | 82 83 85 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 88 | 87 | eleq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) ) | 
						
							| 89 | 88 | rspcv | ⊢ ( ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) ) | 
						
							| 90 | 80 83 89 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 91 |  | lttr | ⊢ ( ( ( 𝐹 ‘ 𝑀 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑛 )  ∈  ℝ  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 )  ∧  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 92 | 74 86 90 91 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 )  ∧  ( 𝐹 ‘ 𝑛 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 93 | 62 92 | mpan2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 94 | 42 93 | animpimp2impd | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( ( 𝜑  →  ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 95 | 11 16 21 26 38 94 | uzind4 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝜑  →  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 96 | 2 95 | mpcom | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 97 | 6 96 | mpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  <  ( 𝐹 ‘ 𝑁 ) ) |