| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smonoord.0 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smonoord.1 |  |-  ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 3 |  | smonoord.2 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) | 
						
							| 4 |  | smonoord.3 |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) | 
						
							| 5 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ( ( M + 1 ) ... N ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> N e. ( ( M + 1 ) ... N ) ) | 
						
							| 7 |  | eleq1 |  |-  ( x = ( M + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( M + 1 ) e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = ( M + 1 ) -> ( F ` x ) = ( F ` ( M + 1 ) ) ) | 
						
							| 9 | 8 | breq2d |  |-  ( x = ( M + 1 ) -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) | 
						
							| 10 | 7 9 | imbi12d |  |-  ( x = ( M + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) ) | 
						
							| 11 | 10 | imbi2d |  |-  ( x = ( M + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) ) ) | 
						
							| 12 |  | eleq1 |  |-  ( x = n -> ( x e. ( ( M + 1 ) ... N ) <-> n e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( x = n -> ( F ` x ) = ( F ` n ) ) | 
						
							| 14 | 13 | breq2d |  |-  ( x = n -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` n ) ) ) | 
						
							| 15 | 12 14 | imbi12d |  |-  ( x = n -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( x = n -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( x = ( n + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) | 
						
							| 19 | 18 | breq2d |  |-  ( x = ( n + 1 ) -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) | 
						
							| 20 | 17 19 | imbi12d |  |-  ( x = ( n + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) ) | 
						
							| 21 | 20 | imbi2d |  |-  ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) ) ) | 
						
							| 22 |  | eleq1 |  |-  ( x = N -> ( x e. ( ( M + 1 ) ... N ) <-> N e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( x = N -> ( F ` x ) = ( F ` N ) ) | 
						
							| 24 | 23 | breq2d |  |-  ( x = N -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` N ) ) ) | 
						
							| 25 | 22 24 | imbi12d |  |-  ( x = N -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) ) | 
						
							| 26 | 25 | imbi2d |  |-  ( x = N -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) ) ) | 
						
							| 27 |  | eluzp1m1 |  |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 28 | 1 2 27 | syl2anc |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 29 |  | eluzfz1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` M ) -> M e. ( M ... ( N - 1 ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> M e. ( M ... ( N - 1 ) ) ) | 
						
							| 31 | 4 | ralrimiva |  |-  ( ph -> A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) ) | 
						
							| 32 |  | fveq2 |  |-  ( k = M -> ( F ` k ) = ( F ` M ) ) | 
						
							| 33 |  | fvoveq1 |  |-  ( k = M -> ( F ` ( k + 1 ) ) = ( F ` ( M + 1 ) ) ) | 
						
							| 34 | 32 33 | breq12d |  |-  ( k = M -> ( ( F ` k ) < ( F ` ( k + 1 ) ) <-> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) | 
						
							| 35 | 34 | rspcv |  |-  ( M e. ( M ... ( N - 1 ) ) -> ( A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) | 
						
							| 36 | 30 31 35 | sylc |  |-  ( ph -> ( F ` M ) < ( F ` ( M + 1 ) ) ) | 
						
							| 37 | 36 | a1d |  |-  ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) | 
						
							| 38 | 37 | a1i |  |-  ( ( M + 1 ) e. ZZ -> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) ) | 
						
							| 39 |  | peano2fzr |  |-  ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ( ( M + 1 ) ... N ) ) | 
						
							| 40 | 39 | adantll |  |-  ( ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ( ( M + 1 ) ... N ) ) | 
						
							| 41 | 40 | ex |  |-  ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> n e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 42 | 41 | imim1d |  |-  ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) ) | 
						
							| 43 |  | peano2uzr |  |-  ( ( M e. ZZ /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> n e. ( ZZ>= ` M ) ) | 
						
							| 44 | 43 | ex |  |-  ( M e. ZZ -> ( n e. ( ZZ>= ` ( M + 1 ) ) -> n e. ( ZZ>= ` M ) ) ) | 
						
							| 45 | 44 1 | syl11 |  |-  ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( ph -> n e. ( ZZ>= ` M ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( ph -> n e. ( ZZ>= ` M ) ) ) | 
						
							| 47 | 46 | impcom |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ZZ>= ` M ) ) | 
						
							| 48 |  | eluzelz |  |-  ( n e. ( ZZ>= ` ( M + 1 ) ) -> n e. ZZ ) | 
						
							| 49 | 48 | adantr |  |-  ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ZZ ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ZZ ) | 
						
							| 51 |  | elfzuz3 |  |-  ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) | 
						
							| 52 | 51 | ad2antll |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) | 
						
							| 53 |  | eluzp1m1 |  |-  ( ( n e. ZZ /\ N e. ( ZZ>= ` ( n + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` n ) ) | 
						
							| 54 | 50 52 53 | syl2anc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( N - 1 ) e. ( ZZ>= ` n ) ) | 
						
							| 55 |  | elfzuzb |  |-  ( n e. ( M ... ( N - 1 ) ) <-> ( n e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` n ) ) ) | 
						
							| 56 | 47 54 55 | sylanbrc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( M ... ( N - 1 ) ) ) | 
						
							| 57 | 31 | adantr |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) ) | 
						
							| 58 |  | fveq2 |  |-  ( k = n -> ( F ` k ) = ( F ` n ) ) | 
						
							| 59 |  | fvoveq1 |  |-  ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) | 
						
							| 60 | 58 59 | breq12d |  |-  ( k = n -> ( ( F ` k ) < ( F ` ( k + 1 ) ) <-> ( F ` n ) < ( F ` ( n + 1 ) ) ) ) | 
						
							| 61 | 60 | rspcv |  |-  ( n e. ( M ... ( N - 1 ) ) -> ( A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) -> ( F ` n ) < ( F ` ( n + 1 ) ) ) ) | 
						
							| 62 | 56 57 61 | sylc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` n ) < ( F ` ( n + 1 ) ) ) | 
						
							| 63 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 64 | 63 | lep1d |  |-  ( M e. ZZ -> M <_ ( M + 1 ) ) | 
						
							| 65 | 1 64 | jccir |  |-  ( ph -> ( M e. ZZ /\ M <_ ( M + 1 ) ) ) | 
						
							| 66 |  | eluzuzle |  |-  ( ( M e. ZZ /\ M <_ ( M + 1 ) ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ( ZZ>= ` M ) ) ) | 
						
							| 67 | 65 2 66 | sylc |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 68 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ph -> M e. ( M ... N ) ) | 
						
							| 70 | 3 | ralrimiva |  |-  ( ph -> A. k e. ( M ... N ) ( F ` k ) e. RR ) | 
						
							| 71 | 32 | eleq1d |  |-  ( k = M -> ( ( F ` k ) e. RR <-> ( F ` M ) e. RR ) ) | 
						
							| 72 | 71 | rspcv |  |-  ( M e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) e. RR -> ( F ` M ) e. RR ) ) | 
						
							| 73 | 69 70 72 | sylc |  |-  ( ph -> ( F ` M ) e. RR ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` M ) e. RR ) | 
						
							| 75 |  | fzp1ss |  |-  ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) | 
						
							| 76 | 1 75 | syl |  |-  ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) | 
						
							| 77 | 76 | sseld |  |-  ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( n + 1 ) e. ( M ... N ) ) ) | 
						
							| 78 | 77 | com12 |  |-  ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( ph -> ( n + 1 ) e. ( M ... N ) ) ) | 
						
							| 79 | 78 | adantl |  |-  ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( ph -> ( n + 1 ) e. ( M ... N ) ) ) | 
						
							| 80 | 79 | impcom |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) | 
						
							| 81 |  | peano2fzr |  |-  ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) | 
						
							| 82 | 47 80 81 | syl2anc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( M ... N ) ) | 
						
							| 83 | 70 | adantr |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> A. k e. ( M ... N ) ( F ` k ) e. RR ) | 
						
							| 84 | 58 | eleq1d |  |-  ( k = n -> ( ( F ` k ) e. RR <-> ( F ` n ) e. RR ) ) | 
						
							| 85 | 84 | rspcv |  |-  ( n e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) e. RR -> ( F ` n ) e. RR ) ) | 
						
							| 86 | 82 83 85 | sylc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` n ) e. RR ) | 
						
							| 87 |  | fveq2 |  |-  ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) | 
						
							| 88 | 87 | eleq1d |  |-  ( k = ( n + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( n + 1 ) ) e. RR ) ) | 
						
							| 89 | 88 | rspcv |  |-  ( ( n + 1 ) e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) e. RR -> ( F ` ( n + 1 ) ) e. RR ) ) | 
						
							| 90 | 80 83 89 | sylc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` ( n + 1 ) ) e. RR ) | 
						
							| 91 |  | lttr |  |-  ( ( ( F ` M ) e. RR /\ ( F ` n ) e. RR /\ ( F ` ( n + 1 ) ) e. RR ) -> ( ( ( F ` M ) < ( F ` n ) /\ ( F ` n ) < ( F ` ( n + 1 ) ) ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) | 
						
							| 92 | 74 86 90 91 | syl3anc |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( ( F ` M ) < ( F ` n ) /\ ( F ` n ) < ( F ` ( n + 1 ) ) ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) | 
						
							| 93 | 62 92 | mpan2d |  |-  ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( F ` M ) < ( F ` n ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) | 
						
							| 94 | 42 93 | animpimp2impd |  |-  ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) ) ) | 
						
							| 95 | 11 16 21 26 38 94 | uzind4 |  |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) ) | 
						
							| 96 | 2 95 | mpcom |  |-  ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) | 
						
							| 97 | 6 96 | mpd |  |-  ( ph -> ( F ` M ) < ( F ` N ) ) |