Metamath Proof Explorer


Theorem monoords

Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses monoords.fk φ k M N F k
monoords.flt φ k M ..^ N F k < F k + 1
monoords.i φ I M N
monoords.j φ J M N
monoords.iltj φ I < J
Assertion monoords φ F I < F J

Proof

Step Hyp Ref Expression
1 monoords.fk φ k M N F k
2 monoords.flt φ k M ..^ N F k < F k + 1
3 monoords.i φ I M N
4 monoords.j φ J M N
5 monoords.iltj φ I < J
6 3 ancli φ φ I M N
7 eleq1 k = I k M N I M N
8 7 anbi2d k = I φ k M N φ I M N
9 fveq2 k = I F k = F I
10 9 eleq1d k = I F k F I
11 8 10 imbi12d k = I φ k M N F k φ I M N F I
12 11 1 vtoclg I M N φ I M N F I
13 3 6 12 sylc φ F I
14 elfzel1 I M N M
15 3 14 syl φ M
16 elfzelz I M N I
17 3 16 syl φ I
18 elfzle1 I M N M I
19 3 18 syl φ M I
20 eluz2 I M M I M I
21 15 17 19 20 syl3anbrc φ I M
22 elfzuz2 I M N N M
23 3 22 syl φ N M
24 eluzelz N M N
25 23 24 syl φ N
26 17 zred φ I
27 elfzelz J M N J
28 4 27 syl φ J
29 28 zred φ J
30 25 zred φ N
31 elfzle2 J M N J N
32 4 31 syl φ J N
33 26 29 30 5 32 ltletrd φ I < N
34 elfzo2 I M ..^ N I M N I < N
35 21 25 33 34 syl3anbrc φ I M ..^ N
36 fzofzp1 I M ..^ N I + 1 M N
37 35 36 syl φ I + 1 M N
38 37 ancli φ φ I + 1 M N
39 eleq1 k = I + 1 k M N I + 1 M N
40 39 anbi2d k = I + 1 φ k M N φ I + 1 M N
41 fveq2 k = I + 1 F k = F I + 1
42 41 eleq1d k = I + 1 F k F I + 1
43 40 42 imbi12d k = I + 1 φ k M N F k φ I + 1 M N F I + 1
44 43 1 vtoclg I + 1 M N φ I + 1 M N F I + 1
45 37 38 44 sylc φ F I + 1
46 4 ancli φ φ J M N
47 eleq1 k = J k M N J M N
48 47 anbi2d k = J φ k M N φ J M N
49 fveq2 k = J F k = F J
50 49 eleq1d k = J F k F J
51 48 50 imbi12d k = J φ k M N F k φ J M N F J
52 51 1 vtoclg J M N φ J M N F J
53 4 46 52 sylc φ F J
54 35 ancli φ φ I M ..^ N
55 eleq1 k = I k M ..^ N I M ..^ N
56 55 anbi2d k = I φ k M ..^ N φ I M ..^ N
57 fvoveq1 k = I F k + 1 = F I + 1
58 9 57 breq12d k = I F k < F k + 1 F I < F I + 1
59 56 58 imbi12d k = I φ k M ..^ N F k < F k + 1 φ I M ..^ N F I < F I + 1
60 59 2 vtoclg I M ..^ N φ I M ..^ N F I < F I + 1
61 35 54 60 sylc φ F I < F I + 1
62 17 peano2zd φ I + 1
63 zltp1le I J I < J I + 1 J
64 17 28 63 syl2anc φ I < J I + 1 J
65 5 64 mpbid φ I + 1 J
66 eluz2 J I + 1 I + 1 J I + 1 J
67 62 28 65 66 syl3anbrc φ J I + 1
68 15 adantr φ k I + 1 J M
69 25 adantr φ k I + 1 J N
70 elfzelz k I + 1 J k
71 70 adantl φ k I + 1 J k
72 68 69 71 3jca φ k I + 1 J M N k
73 68 zred φ k I + 1 J M
74 71 zred φ k I + 1 J k
75 62 zred φ I + 1
76 75 adantr φ k I + 1 J I + 1
77 26 adantr φ k I + 1 J I
78 19 adantr φ k I + 1 J M I
79 77 ltp1d φ k I + 1 J I < I + 1
80 73 77 76 78 79 lelttrd φ k I + 1 J M < I + 1
81 elfzle1 k I + 1 J I + 1 k
82 81 adantl φ k I + 1 J I + 1 k
83 73 76 74 80 82 ltletrd φ k I + 1 J M < k
84 73 74 83 ltled φ k I + 1 J M k
85 29 adantr φ k I + 1 J J
86 69 zred φ k I + 1 J N
87 elfzle2 k I + 1 J k J
88 87 adantl φ k I + 1 J k J
89 32 adantr φ k I + 1 J J N
90 74 85 86 88 89 letrd φ k I + 1 J k N
91 72 84 90 jca32 φ k I + 1 J M N k M k k N
92 elfz2 k M N M N k M k k N
93 91 92 sylibr φ k I + 1 J k M N
94 93 1 syldan φ k I + 1 J F k
95 15 adantr φ k I + 1 J 1 M
96 25 adantr φ k I + 1 J 1 N
97 elfzelz k I + 1 J 1 k
98 97 adantl φ k I + 1 J 1 k
99 95 96 98 3jca φ k I + 1 J 1 M N k
100 95 zred φ k I + 1 J 1 M
101 98 zred φ k I + 1 J 1 k
102 75 adantr φ k I + 1 J 1 I + 1
103 15 zred φ M
104 26 ltp1d φ I < I + 1
105 103 26 75 19 104 lelttrd φ M < I + 1
106 105 adantr φ k I + 1 J 1 M < I + 1
107 elfzle1 k I + 1 J 1 I + 1 k
108 107 adantl φ k I + 1 J 1 I + 1 k
109 100 102 101 106 108 ltletrd φ k I + 1 J 1 M < k
110 100 101 109 ltled φ k I + 1 J 1 M k
111 96 zred φ k I + 1 J 1 N
112 peano2rem J J 1
113 29 112 syl φ J 1
114 113 adantr φ k I + 1 J 1 J 1
115 elfzle2 k I + 1 J 1 k J 1
116 115 adantl φ k I + 1 J 1 k J 1
117 29 adantr φ k I + 1 J 1 J
118 117 ltm1d φ k I + 1 J 1 J 1 < J
119 32 adantr φ k I + 1 J 1 J N
120 114 117 111 118 119 ltletrd φ k I + 1 J 1 J 1 < N
121 101 114 111 116 120 lelttrd φ k I + 1 J 1 k < N
122 101 111 121 ltled φ k I + 1 J 1 k N
123 99 110 122 jca32 φ k I + 1 J 1 M N k M k k N
124 123 92 sylibr φ k I + 1 J 1 k M N
125 124 1 syldan φ k I + 1 J 1 F k
126 peano2zm N N 1
127 96 126 syl φ k I + 1 J 1 N 1
128 95 127 98 3jca φ k I + 1 J 1 M N 1 k
129 127 zred φ k I + 1 J 1 N 1
130 1red φ 1
131 29 30 130 32 lesub1dd φ J 1 N 1
132 131 adantr φ k I + 1 J 1 J 1 N 1
133 101 114 129 116 132 letrd φ k I + 1 J 1 k N 1
134 128 110 133 jca32 φ k I + 1 J 1 M N 1 k M k k N 1
135 elfz2 k M N 1 M N 1 k M k k N 1
136 134 135 sylibr φ k I + 1 J 1 k M N 1
137 simpr φ k M N 1 k M N 1
138 fzoval N M ..^ N = M N 1
139 25 138 syl φ M ..^ N = M N 1
140 139 eqcomd φ M N 1 = M ..^ N
141 140 adantr φ k M N 1 M N 1 = M ..^ N
142 137 141 eleqtrd φ k M N 1 k M ..^ N
143 fzofzp1 k M ..^ N k + 1 M N
144 142 143 syl φ k M N 1 k + 1 M N
145 simpl φ k M N 1 φ
146 145 144 jca φ k M N 1 φ k + 1 M N
147 eleq1 j = k + 1 j M N k + 1 M N
148 147 anbi2d j = k + 1 φ j M N φ k + 1 M N
149 fveq2 j = k + 1 F j = F k + 1
150 149 eleq1d j = k + 1 F j F k + 1
151 148 150 imbi12d j = k + 1 φ j M N F j φ k + 1 M N F k + 1
152 eleq1 k = j k M N j M N
153 152 anbi2d k = j φ k M N φ j M N
154 fveq2 k = j F k = F j
155 154 eleq1d k = j F k F j
156 153 155 imbi12d k = j φ k M N F k φ j M N F j
157 156 1 chvarvv φ j M N F j
158 151 157 vtoclg k + 1 M N φ k + 1 M N F k + 1
159 144 146 158 sylc φ k M N 1 F k + 1
160 136 159 syldan φ k I + 1 J 1 F k + 1
161 142 2 syldan φ k M N 1 F k < F k + 1
162 136 161 syldan φ k I + 1 J 1 F k < F k + 1
163 125 160 162 ltled φ k I + 1 J 1 F k F k + 1
164 67 94 163 monoord φ F I + 1 F J
165 13 45 53 61 164 ltletrd φ F I < F J