Metamath Proof Explorer


Theorem monoords

Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses monoords.fk φkMNFk
monoords.flt φkM..^NFk<Fk+1
monoords.i φIMN
monoords.j φJMN
monoords.iltj φI<J
Assertion monoords φFI<FJ

Proof

Step Hyp Ref Expression
1 monoords.fk φkMNFk
2 monoords.flt φkM..^NFk<Fk+1
3 monoords.i φIMN
4 monoords.j φJMN
5 monoords.iltj φI<J
6 3 ancli φφIMN
7 eleq1 k=IkMNIMN
8 7 anbi2d k=IφkMNφIMN
9 fveq2 k=IFk=FI
10 9 eleq1d k=IFkFI
11 8 10 imbi12d k=IφkMNFkφIMNFI
12 11 1 vtoclg IMNφIMNFI
13 3 6 12 sylc φFI
14 elfzel1 IMNM
15 3 14 syl φM
16 3 elfzelzd φI
17 elfzle1 IMNMI
18 3 17 syl φMI
19 eluz2 IMMIMI
20 15 16 18 19 syl3anbrc φIM
21 elfzuz2 IMNNM
22 3 21 syl φNM
23 eluzelz NMN
24 22 23 syl φN
25 16 zred φI
26 4 elfzelzd φJ
27 26 zred φJ
28 24 zred φN
29 elfzle2 JMNJN
30 4 29 syl φJN
31 25 27 28 5 30 ltletrd φI<N
32 elfzo2 IM..^NIMNI<N
33 20 24 31 32 syl3anbrc φIM..^N
34 fzofzp1 IM..^NI+1MN
35 33 34 syl φI+1MN
36 35 ancli φφI+1MN
37 eleq1 k=I+1kMNI+1MN
38 37 anbi2d k=I+1φkMNφI+1MN
39 fveq2 k=I+1Fk=FI+1
40 39 eleq1d k=I+1FkFI+1
41 38 40 imbi12d k=I+1φkMNFkφI+1MNFI+1
42 41 1 vtoclg I+1MNφI+1MNFI+1
43 35 36 42 sylc φFI+1
44 4 ancli φφJMN
45 eleq1 k=JkMNJMN
46 45 anbi2d k=JφkMNφJMN
47 fveq2 k=JFk=FJ
48 47 eleq1d k=JFkFJ
49 46 48 imbi12d k=JφkMNFkφJMNFJ
50 49 1 vtoclg JMNφJMNFJ
51 4 44 50 sylc φFJ
52 33 ancli φφIM..^N
53 eleq1 k=IkM..^NIM..^N
54 53 anbi2d k=IφkM..^NφIM..^N
55 fvoveq1 k=IFk+1=FI+1
56 9 55 breq12d k=IFk<Fk+1FI<FI+1
57 54 56 imbi12d k=IφkM..^NFk<Fk+1φIM..^NFI<FI+1
58 57 2 vtoclg IM..^NφIM..^NFI<FI+1
59 33 52 58 sylc φFI<FI+1
60 16 peano2zd φI+1
61 zltp1le IJI<JI+1J
62 16 26 61 syl2anc φI<JI+1J
63 5 62 mpbid φI+1J
64 eluz2 JI+1I+1JI+1J
65 60 26 63 64 syl3anbrc φJI+1
66 15 adantr φkI+1JM
67 24 adantr φkI+1JN
68 elfzelz kI+1Jk
69 68 adantl φkI+1Jk
70 66 zred φkI+1JM
71 69 zred φkI+1Jk
72 60 zred φI+1
73 72 adantr φkI+1JI+1
74 25 adantr φkI+1JI
75 18 adantr φkI+1JMI
76 74 ltp1d φkI+1JI<I+1
77 70 74 73 75 76 lelttrd φkI+1JM<I+1
78 elfzle1 kI+1JI+1k
79 78 adantl φkI+1JI+1k
80 70 73 71 77 79 ltletrd φkI+1JM<k
81 70 71 80 ltled φkI+1JMk
82 27 adantr φkI+1JJ
83 67 zred φkI+1JN
84 elfzle2 kI+1JkJ
85 84 adantl φkI+1JkJ
86 30 adantr φkI+1JJN
87 71 82 83 85 86 letrd φkI+1JkN
88 66 67 69 81 87 elfzd φkI+1JkMN
89 88 1 syldan φkI+1JFk
90 15 adantr φkI+1J1M
91 24 adantr φkI+1J1N
92 elfzelz kI+1J1k
93 92 adantl φkI+1J1k
94 90 zred φkI+1J1M
95 93 zred φkI+1J1k
96 72 adantr φkI+1J1I+1
97 15 zred φM
98 25 ltp1d φI<I+1
99 97 25 72 18 98 lelttrd φM<I+1
100 99 adantr φkI+1J1M<I+1
101 elfzle1 kI+1J1I+1k
102 101 adantl φkI+1J1I+1k
103 94 96 95 100 102 ltletrd φkI+1J1M<k
104 94 95 103 ltled φkI+1J1Mk
105 91 zred φkI+1J1N
106 peano2rem JJ1
107 27 106 syl φJ1
108 107 adantr φkI+1J1J1
109 elfzle2 kI+1J1kJ1
110 109 adantl φkI+1J1kJ1
111 27 adantr φkI+1J1J
112 111 ltm1d φkI+1J1J1<J
113 30 adantr φkI+1J1JN
114 108 111 105 112 113 ltletrd φkI+1J1J1<N
115 95 108 105 110 114 lelttrd φkI+1J1k<N
116 95 105 115 ltled φkI+1J1kN
117 90 91 93 104 116 elfzd φkI+1J1kMN
118 117 1 syldan φkI+1J1Fk
119 peano2zm NN1
120 91 119 syl φkI+1J1N1
121 120 zred φkI+1J1N1
122 1red φ1
123 27 28 122 30 lesub1dd φJ1N1
124 123 adantr φkI+1J1J1N1
125 95 108 121 110 124 letrd φkI+1J1kN1
126 90 120 93 104 125 elfzd φkI+1J1kMN1
127 simpr φkMN1kMN1
128 fzoval NM..^N=MN1
129 24 128 syl φM..^N=MN1
130 129 eqcomd φMN1=M..^N
131 130 adantr φkMN1MN1=M..^N
132 127 131 eleqtrd φkMN1kM..^N
133 fzofzp1 kM..^Nk+1MN
134 132 133 syl φkMN1k+1MN
135 simpl φkMN1φ
136 135 134 jca φkMN1φk+1MN
137 eleq1 j=k+1jMNk+1MN
138 137 anbi2d j=k+1φjMNφk+1MN
139 fveq2 j=k+1Fj=Fk+1
140 139 eleq1d j=k+1FjFk+1
141 138 140 imbi12d j=k+1φjMNFjφk+1MNFk+1
142 eleq1 k=jkMNjMN
143 142 anbi2d k=jφkMNφjMN
144 fveq2 k=jFk=Fj
145 144 eleq1d k=jFkFj
146 143 145 imbi12d k=jφkMNFkφjMNFj
147 146 1 chvarvv φjMNFj
148 141 147 vtoclg k+1MNφk+1MNFk+1
149 134 136 148 sylc φkMN1Fk+1
150 126 149 syldan φkI+1J1Fk+1
151 132 2 syldan φkMN1Fk<Fk+1
152 126 151 syldan φkI+1J1Fk<Fk+1
153 118 150 152 ltled φkI+1J1FkFk+1
154 65 89 153 monoord φFI+1FJ
155 13 43 51 59 154 ltletrd φFI<FJ