| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | 0zd | ⊢ ( 𝑀  ∈  ℕ  →  0  ∈  ℤ ) | 
						
							| 4 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | nngt0 | ⊢ ( 𝑀  ∈  ℕ  →  0  <  𝑀 ) | 
						
							| 6 | 3 4 5 | 3jca | ⊢ ( 𝑀  ∈  ℕ  →  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 ) ) | 
						
							| 8 |  | fzopred | ⊢ ( ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 )  →  ( 0 ..^ 𝑀 )  =  ( { 0 }  ∪  ( ( 0  +  1 ) ..^ 𝑀 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝑀 )  =  ( { 0 }  ∪  ( ( 0  +  1 ) ..^ 𝑀 ) ) ) | 
						
							| 10 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 0  +  1 )  =  1 ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( 0  +  1 ) ..^ 𝑀 )  =  ( 1 ..^ 𝑀 ) ) | 
						
							| 13 | 12 | uneq2d | ⊢ ( 𝜑  →  ( { 0 }  ∪  ( ( 0  +  1 ) ..^ 𝑀 ) )  =  ( { 0 }  ∪  ( 1 ..^ 𝑀 ) ) ) | 
						
							| 14 | 9 13 | eqtrd | ⊢ ( 𝜑  →  ( 0 ..^ 𝑀 )  =  ( { 0 }  ∪  ( 1 ..^ 𝑀 ) ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  𝑖  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑀 ) ) ) ) | 
						
							| 16 |  | elun | ⊢ ( 𝑖  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑀 ) )  ↔  ( 𝑖  ∈  { 0 }  ∨  𝑖  ∈  ( 1 ..^ 𝑀 ) ) ) | 
						
							| 17 |  | elsni | ⊢ ( 𝑖  ∈  { 0 }  →  𝑖  =  0 ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑖  =  0  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 20 | 1 2 | iccpartlt | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑖  =  0  ∧  𝜑 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 22 | 19 21 | eqbrtrd | ⊢ ( ( 𝑖  =  0  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝑖  =  0  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 24 | 17 23 | syl | ⊢ ( 𝑖  ∈  { 0 }  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 26 | 25 | breq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 27 | 26 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 28 | 1 2 | iccpartiltu | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 29 | 27 28 | syl11 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 30 | 24 29 | jaoi | ⊢ ( ( 𝑖  ∈  { 0 }  ∨  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  { 0 }  ∨  𝑖  ∈  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 32 | 16 31 | biimtrid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 33 | 15 32 | sylbid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 34 | 33 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) |