| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | elnnuz | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 4 | 1 3 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 5 |  | fzisfzounsn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ... 𝑀 )  =  ( ( 1 ..^ 𝑀 )  ∪  { 𝑀 } ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( ( 1 ..^ 𝑀 )  ∪  { 𝑀 } ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↔  𝑖  ∈  ( ( 1 ..^ 𝑀 )  ∪  { 𝑀 } ) ) ) | 
						
							| 8 |  | elun | ⊢ ( 𝑖  ∈  ( ( 1 ..^ 𝑀 )  ∪  { 𝑀 } )  ↔  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  ∈  { 𝑀 } ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( ( 1 ..^ 𝑀 )  ∪  { 𝑀 } )  ↔  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  ∈  { 𝑀 } ) ) ) | 
						
							| 10 |  | velsn | ⊢ ( 𝑖  ∈  { 𝑀 }  ↔  𝑖  =  𝑀 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝑀 }  ↔  𝑖  =  𝑀 ) ) | 
						
							| 12 | 11 | orbi2d | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  ∈  { 𝑀 } )  ↔  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  =  𝑀 ) ) ) | 
						
							| 13 | 7 9 12 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↔  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  =  𝑀 ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 16 | 15 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑘 )  →  ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 17 | 1 2 | iccpartigtl | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 18 | 16 17 | syl11 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑀 )  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 19 | 1 2 | iccpartlt | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑖  =  𝑀  ∧  𝜑 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑖  =  𝑀  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 23 | 20 22 | breqtrrd | ⊢ ( ( 𝑖  =  𝑀  ∧  𝜑 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝑖  =  𝑀  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 25 | 18 24 | jaoi | ⊢ ( ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  =  𝑀 )  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 26 | 25 | com12 | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 1 ..^ 𝑀 )  ∨  𝑖  =  𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 27 | 13 26 | sylbid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 28 | 27 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) |