Metamath Proof Explorer


Theorem fourierdlem11

Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem11.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem11.m φM
fourierdlem11.q φQPM
Assertion fourierdlem11 φABA<B

Proof

Step Hyp Ref Expression
1 fourierdlem11.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem11.m φM
3 fourierdlem11.q φQPM
4 1 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
5 2 4 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
6 3 5 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
7 6 simprd φQ0=AQM=Bi0..^MQi<Qi+1
8 7 simpld φQ0=AQM=B
9 8 simpld φQ0=A
10 6 simpld φQ0M
11 elmapi Q0MQ:0M
12 10 11 syl φQ:0M
13 0zd φ0
14 2 nnzd φM
15 0red φ0
16 15 leidd φ00
17 2 nnred φM
18 2 nngt0d φ0<M
19 15 17 18 ltled φ0M
20 13 14 13 16 19 elfzd φ00M
21 12 20 ffvelcdmd φQ0
22 9 21 eqeltrrd φA
23 8 simprd φQM=B
24 17 leidd φMM
25 13 14 14 19 24 elfzd φM0M
26 12 25 ffvelcdmd φQM
27 23 26 eqeltrrd φB
28 1zzd φ1
29 0le1 01
30 29 a1i φ01
31 2 nnge1d φ1M
32 13 14 28 30 31 elfzd φ10M
33 12 32 ffvelcdmd φQ1
34 elfzo 00M00..^M000<M
35 13 13 14 34 syl3anc φ00..^M000<M
36 16 18 35 mpbir2and φ00..^M
37 0re 0
38 eleq1 i=0i0..^M00..^M
39 38 anbi2d i=0φi0..^Mφ00..^M
40 fveq2 i=0Qi=Q0
41 oveq1 i=0i+1=0+1
42 41 fveq2d i=0Qi+1=Q0+1
43 40 42 breq12d i=0Qi<Qi+1Q0<Q0+1
44 39 43 imbi12d i=0φi0..^MQi<Qi+1φ00..^MQ0<Q0+1
45 7 simprd φi0..^MQi<Qi+1
46 45 r19.21bi φi0..^MQi<Qi+1
47 44 46 vtoclg 0φ00..^MQ0<Q0+1
48 37 47 ax-mp φ00..^MQ0<Q0+1
49 36 48 mpdan φQ0<Q0+1
50 0p1e1 0+1=1
51 50 a1i φ0+1=1
52 51 fveq2d φQ0+1=Q1
53 49 9 52 3brtr3d φA<Q1
54 nnuz =1
55 2 54 eleqtrdi φM1
56 12 adantr φi1MQ:0M
57 0zd i1M0
58 elfzel2 i1MM
59 elfzelz i1Mi
60 0red i1M0
61 59 zred i1Mi
62 1red i1M1
63 0lt1 0<1
64 63 a1i i1M0<1
65 elfzle1 i1M1i
66 60 62 61 64 65 ltletrd i1M0<i
67 60 61 66 ltled i1M0i
68 elfzle2 i1MiM
69 57 58 59 67 68 elfzd i1Mi0M
70 69 adantl φi1Mi0M
71 56 70 ffvelcdmd φi1MQi
72 12 adantr φi1M1Q:0M
73 0zd φi1M10
74 14 adantr φi1M1M
75 elfzelz i1M1i
76 75 adantl φi1M1i
77 0red i1M10
78 75 zred i1M1i
79 1red i1M11
80 63 a1i i1M10<1
81 elfzle1 i1M11i
82 77 79 78 80 81 ltletrd i1M10<i
83 77 78 82 ltled i1M10i
84 83 adantl φi1M10i
85 78 adantl φi1M1i
86 17 adantr φi1M1M
87 peano2rem MM1
88 86 87 syl φi1M1M1
89 elfzle2 i1M1iM1
90 89 adantl φi1M1iM1
91 86 ltm1d φi1M1M1<M
92 85 88 86 90 91 lelttrd φi1M1i<M
93 85 86 92 ltled φi1M1iM
94 73 74 76 84 93 elfzd φi1M1i0M
95 72 94 ffvelcdmd φi1M1Qi
96 76 peano2zd φi1M1i+1
97 0red φi1M10
98 peano2re ii+1
99 85 98 syl φi1M1i+1
100 1red φi1M11
101 63 a1i φi1M10<1
102 78 98 syl i1M1i+1
103 78 ltp1d i1M1i<i+1
104 79 78 102 81 103 lelttrd i1M11<i+1
105 104 adantl φi1M11<i+1
106 97 100 99 101 105 lttrd φi1M10<i+1
107 97 99 106 ltled φi1M10i+1
108 85 88 100 90 leadd1dd φi1M1i+1M-1+1
109 2 nncnd φM
110 1cnd φ1
111 109 110 npcand φM-1+1=M
112 111 adantr φi1M1M-1+1=M
113 108 112 breqtrd φi1M1i+1M
114 73 74 96 107 113 elfzd φi1M1i+10M
115 72 114 ffvelcdmd φi1M1Qi+1
116 elfzo i0Mi0..^M0ii<M
117 76 73 74 116 syl3anc φi1M1i0..^M0ii<M
118 84 92 117 mpbir2and φi1M1i0..^M
119 118 46 syldan φi1M1Qi<Qi+1
120 95 115 119 ltled φi1M1QiQi+1
121 55 71 120 monoord φQ1QM
122 121 23 breqtrd φQ1B
123 22 33 27 53 122 ltletrd φA<B
124 22 27 123 3jca φABA<B