| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem11.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 2 |
|
fourierdlem11.m |
|- ( ph -> M e. NN ) |
| 3 |
|
fourierdlem11.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 4 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 6 |
3 5
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 7 |
6
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 8 |
7
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
| 9 |
8
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
| 10 |
6
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 11 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 12 |
10 11
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 13 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 14 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 15 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 16 |
15
|
leidd |
|- ( ph -> 0 <_ 0 ) |
| 17 |
2
|
nnred |
|- ( ph -> M e. RR ) |
| 18 |
2
|
nngt0d |
|- ( ph -> 0 < M ) |
| 19 |
15 17 18
|
ltled |
|- ( ph -> 0 <_ M ) |
| 20 |
13 14 13 16 19
|
elfzd |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 21 |
12 20
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 22 |
9 21
|
eqeltrrd |
|- ( ph -> A e. RR ) |
| 23 |
8
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
| 24 |
17
|
leidd |
|- ( ph -> M <_ M ) |
| 25 |
13 14 14 19 24
|
elfzd |
|- ( ph -> M e. ( 0 ... M ) ) |
| 26 |
12 25
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. RR ) |
| 27 |
23 26
|
eqeltrrd |
|- ( ph -> B e. RR ) |
| 28 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 29 |
|
0le1 |
|- 0 <_ 1 |
| 30 |
29
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 31 |
2
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 32 |
13 14 28 30 31
|
elfzd |
|- ( ph -> 1 e. ( 0 ... M ) ) |
| 33 |
12 32
|
ffvelcdmd |
|- ( ph -> ( Q ` 1 ) e. RR ) |
| 34 |
|
elfzo |
|- ( ( 0 e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( 0 e. ( 0 ..^ M ) <-> ( 0 <_ 0 /\ 0 < M ) ) ) |
| 35 |
13 13 14 34
|
syl3anc |
|- ( ph -> ( 0 e. ( 0 ..^ M ) <-> ( 0 <_ 0 /\ 0 < M ) ) ) |
| 36 |
16 18 35
|
mpbir2and |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
| 37 |
|
0re |
|- 0 e. RR |
| 38 |
|
eleq1 |
|- ( i = 0 -> ( i e. ( 0 ..^ M ) <-> 0 e. ( 0 ..^ M ) ) ) |
| 39 |
38
|
anbi2d |
|- ( i = 0 -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ 0 e. ( 0 ..^ M ) ) ) ) |
| 40 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
| 41 |
|
oveq1 |
|- ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) |
| 42 |
41
|
fveq2d |
|- ( i = 0 -> ( Q ` ( i + 1 ) ) = ( Q ` ( 0 + 1 ) ) ) |
| 43 |
40 42
|
breq12d |
|- ( i = 0 -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) |
| 44 |
39 43
|
imbi12d |
|- ( i = 0 -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) ) |
| 45 |
7
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 46 |
45
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 47 |
44 46
|
vtoclg |
|- ( 0 e. RR -> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) |
| 48 |
37 47
|
ax-mp |
|- ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) |
| 49 |
36 48
|
mpdan |
|- ( ph -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) |
| 50 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 51 |
50
|
a1i |
|- ( ph -> ( 0 + 1 ) = 1 ) |
| 52 |
51
|
fveq2d |
|- ( ph -> ( Q ` ( 0 + 1 ) ) = ( Q ` 1 ) ) |
| 53 |
49 9 52
|
3brtr3d |
|- ( ph -> A < ( Q ` 1 ) ) |
| 54 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 55 |
2 54
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 56 |
12
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 57 |
|
0zd |
|- ( i e. ( 1 ... M ) -> 0 e. ZZ ) |
| 58 |
|
elfzel2 |
|- ( i e. ( 1 ... M ) -> M e. ZZ ) |
| 59 |
|
elfzelz |
|- ( i e. ( 1 ... M ) -> i e. ZZ ) |
| 60 |
|
0red |
|- ( i e. ( 1 ... M ) -> 0 e. RR ) |
| 61 |
59
|
zred |
|- ( i e. ( 1 ... M ) -> i e. RR ) |
| 62 |
|
1red |
|- ( i e. ( 1 ... M ) -> 1 e. RR ) |
| 63 |
|
0lt1 |
|- 0 < 1 |
| 64 |
63
|
a1i |
|- ( i e. ( 1 ... M ) -> 0 < 1 ) |
| 65 |
|
elfzle1 |
|- ( i e. ( 1 ... M ) -> 1 <_ i ) |
| 66 |
60 62 61 64 65
|
ltletrd |
|- ( i e. ( 1 ... M ) -> 0 < i ) |
| 67 |
60 61 66
|
ltled |
|- ( i e. ( 1 ... M ) -> 0 <_ i ) |
| 68 |
|
elfzle2 |
|- ( i e. ( 1 ... M ) -> i <_ M ) |
| 69 |
57 58 59 67 68
|
elfzd |
|- ( i e. ( 1 ... M ) -> i e. ( 0 ... M ) ) |
| 70 |
69
|
adantl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 0 ... M ) ) |
| 71 |
56 70
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( Q ` i ) e. RR ) |
| 72 |
12
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> Q : ( 0 ... M ) --> RR ) |
| 73 |
|
0zd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 e. ZZ ) |
| 74 |
14
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. ZZ ) |
| 75 |
|
elfzelz |
|- ( i e. ( 1 ... ( M - 1 ) ) -> i e. ZZ ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ZZ ) |
| 77 |
|
0red |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 0 e. RR ) |
| 78 |
75
|
zred |
|- ( i e. ( 1 ... ( M - 1 ) ) -> i e. RR ) |
| 79 |
|
1red |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 1 e. RR ) |
| 80 |
63
|
a1i |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 0 < 1 ) |
| 81 |
|
elfzle1 |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 1 <_ i ) |
| 82 |
77 79 78 80 81
|
ltletrd |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 0 < i ) |
| 83 |
77 78 82
|
ltled |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 0 <_ i ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 <_ i ) |
| 85 |
78
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. RR ) |
| 86 |
17
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. RR ) |
| 87 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
| 88 |
86 87
|
syl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( M - 1 ) e. RR ) |
| 89 |
|
elfzle2 |
|- ( i e. ( 1 ... ( M - 1 ) ) -> i <_ ( M - 1 ) ) |
| 90 |
89
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i <_ ( M - 1 ) ) |
| 91 |
86
|
ltm1d |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( M - 1 ) < M ) |
| 92 |
85 88 86 90 91
|
lelttrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i < M ) |
| 93 |
85 86 92
|
ltled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i <_ M ) |
| 94 |
73 74 76 84 93
|
elfzd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 0 ... M ) ) |
| 95 |
72 94
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) e. RR ) |
| 96 |
76
|
peano2zd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. ZZ ) |
| 97 |
|
0red |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 e. RR ) |
| 98 |
|
peano2re |
|- ( i e. RR -> ( i + 1 ) e. RR ) |
| 99 |
85 98
|
syl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. RR ) |
| 100 |
|
1red |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 1 e. RR ) |
| 101 |
63
|
a1i |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 < 1 ) |
| 102 |
78 98
|
syl |
|- ( i e. ( 1 ... ( M - 1 ) ) -> ( i + 1 ) e. RR ) |
| 103 |
78
|
ltp1d |
|- ( i e. ( 1 ... ( M - 1 ) ) -> i < ( i + 1 ) ) |
| 104 |
79 78 102 81 103
|
lelttrd |
|- ( i e. ( 1 ... ( M - 1 ) ) -> 1 < ( i + 1 ) ) |
| 105 |
104
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 1 < ( i + 1 ) ) |
| 106 |
97 100 99 101 105
|
lttrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 < ( i + 1 ) ) |
| 107 |
97 99 106
|
ltled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 <_ ( i + 1 ) ) |
| 108 |
85 88 100 90
|
leadd1dd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) <_ ( ( M - 1 ) + 1 ) ) |
| 109 |
2
|
nncnd |
|- ( ph -> M e. CC ) |
| 110 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 111 |
109 110
|
npcand |
|- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( M - 1 ) + 1 ) = M ) |
| 113 |
108 112
|
breqtrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) <_ M ) |
| 114 |
73 74 96 107 113
|
elfzd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 115 |
72 114
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 116 |
|
elfzo |
|- ( ( i e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( i e. ( 0 ..^ M ) <-> ( 0 <_ i /\ i < M ) ) ) |
| 117 |
76 73 74 116
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ( 0 ..^ M ) <-> ( 0 <_ i /\ i < M ) ) ) |
| 118 |
84 92 117
|
mpbir2and |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 0 ..^ M ) ) |
| 119 |
118 46
|
syldan |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 120 |
95 115 119
|
ltled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
| 121 |
55 71 120
|
monoord |
|- ( ph -> ( Q ` 1 ) <_ ( Q ` M ) ) |
| 122 |
121 23
|
breqtrd |
|- ( ph -> ( Q ` 1 ) <_ B ) |
| 123 |
22 33 27 53 122
|
ltletrd |
|- ( ph -> A < B ) |
| 124 |
22 27 123
|
3jca |
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |