| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ M ) <-> M e. NN ) | 
						
							| 4 | 1 3 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ M ) ) | 
						
							| 5 |  | iccpartimp |  |-  ( ( M e. NN /\ P e. ( RePart ` M ) /\ 0 e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 6 | 1 2 4 5 | syl3anc |  |-  ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ph -> ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( M = 1 /\ ph ) -> ( P ` 0 ) < ( P ` ( 0 + 1 ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( M = 1 -> ( P ` M ) = ( P ` 1 ) ) | 
						
							| 10 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 11 | 10 | fveq2i |  |-  ( P ` 1 ) = ( P ` ( 0 + 1 ) ) | 
						
							| 12 | 9 11 | eqtrdi |  |-  ( M = 1 -> ( P ` M ) = ( P ` ( 0 + 1 ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( M = 1 /\ ph ) -> ( P ` M ) = ( P ` ( 0 + 1 ) ) ) | 
						
							| 14 | 8 13 | breqtrrd |  |-  ( ( M = 1 /\ ph ) -> ( P ` 0 ) < ( P ` M ) ) | 
						
							| 15 | 14 | ex |  |-  ( M = 1 -> ( ph -> ( P ` 0 ) < ( P ` M ) ) ) | 
						
							| 16 | 1 2 | iccpartiltu |  |-  ( ph -> A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) ) | 
						
							| 17 | 1 2 | iccpartigtl |  |-  ( ph -> A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) ) | 
						
							| 18 |  | 1nn |  |-  1 e. NN | 
						
							| 19 | 18 | a1i |  |-  ( ( ph /\ -. M = 1 ) -> 1 e. NN ) | 
						
							| 20 | 1 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> M e. NN ) | 
						
							| 21 |  | df-ne |  |-  ( M =/= 1 <-> -. M = 1 ) | 
						
							| 22 | 1 | nnge1d |  |-  ( ph -> 1 <_ M ) | 
						
							| 23 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 24 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 25 | 23 24 | ltlend |  |-  ( ph -> ( 1 < M <-> ( 1 <_ M /\ M =/= 1 ) ) ) | 
						
							| 26 | 25 | biimprd |  |-  ( ph -> ( ( 1 <_ M /\ M =/= 1 ) -> 1 < M ) ) | 
						
							| 27 | 22 26 | mpand |  |-  ( ph -> ( M =/= 1 -> 1 < M ) ) | 
						
							| 28 | 21 27 | biimtrrid |  |-  ( ph -> ( -. M = 1 -> 1 < M ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ph /\ -. M = 1 ) -> 1 < M ) | 
						
							| 30 |  | elfzo1 |  |-  ( 1 e. ( 1 ..^ M ) <-> ( 1 e. NN /\ M e. NN /\ 1 < M ) ) | 
						
							| 31 | 19 20 29 30 | syl3anbrc |  |-  ( ( ph /\ -. M = 1 ) -> 1 e. ( 1 ..^ M ) ) | 
						
							| 32 |  | fveq2 |  |-  ( i = 1 -> ( P ` i ) = ( P ` 1 ) ) | 
						
							| 33 | 32 | breq2d |  |-  ( i = 1 -> ( ( P ` 0 ) < ( P ` i ) <-> ( P ` 0 ) < ( P ` 1 ) ) ) | 
						
							| 34 | 33 | rspcv |  |-  ( 1 e. ( 1 ..^ M ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( P ` 0 ) < ( P ` 1 ) ) ) | 
						
							| 35 | 31 34 | syl |  |-  ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( P ` 0 ) < ( P ` 1 ) ) ) | 
						
							| 36 | 32 | breq1d |  |-  ( i = 1 -> ( ( P ` i ) < ( P ` M ) <-> ( P ` 1 ) < ( P ` M ) ) ) | 
						
							| 37 | 36 | rspcv |  |-  ( 1 e. ( 1 ..^ M ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 1 ) < ( P ` M ) ) ) | 
						
							| 38 | 31 37 | syl |  |-  ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 1 ) < ( P ` M ) ) ) | 
						
							| 39 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 40 |  | 0elfz |  |-  ( M e. NN0 -> 0 e. ( 0 ... M ) ) | 
						
							| 41 | 1 39 40 | 3syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 42 | 1 2 41 | iccpartxr |  |-  ( ph -> ( P ` 0 ) e. RR* ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> ( P ` 0 ) e. RR* ) | 
						
							| 44 | 2 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> P e. ( RePart ` M ) ) | 
						
							| 45 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 46 | 45 | a1i |  |-  ( ( ph /\ -. M = 1 ) -> 1 e. NN0 ) | 
						
							| 47 | 1 39 | syl |  |-  ( ph -> M e. NN0 ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> M e. NN0 ) | 
						
							| 49 | 22 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> 1 <_ M ) | 
						
							| 50 |  | elfz2nn0 |  |-  ( 1 e. ( 0 ... M ) <-> ( 1 e. NN0 /\ M e. NN0 /\ 1 <_ M ) ) | 
						
							| 51 | 46 48 49 50 | syl3anbrc |  |-  ( ( ph /\ -. M = 1 ) -> 1 e. ( 0 ... M ) ) | 
						
							| 52 | 20 44 51 | iccpartxr |  |-  ( ( ph /\ -. M = 1 ) -> ( P ` 1 ) e. RR* ) | 
						
							| 53 |  | nn0fz0 |  |-  ( M e. NN0 <-> M e. ( 0 ... M ) ) | 
						
							| 54 | 39 53 | sylib |  |-  ( M e. NN -> M e. ( 0 ... M ) ) | 
						
							| 55 | 1 54 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 56 | 1 2 55 | iccpartxr |  |-  ( ph -> ( P ` M ) e. RR* ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ -. M = 1 ) -> ( P ` M ) e. RR* ) | 
						
							| 58 |  | xrlttr |  |-  ( ( ( P ` 0 ) e. RR* /\ ( P ` 1 ) e. RR* /\ ( P ` M ) e. RR* ) -> ( ( ( P ` 0 ) < ( P ` 1 ) /\ ( P ` 1 ) < ( P ` M ) ) -> ( P ` 0 ) < ( P ` M ) ) ) | 
						
							| 59 | 43 52 57 58 | syl3anc |  |-  ( ( ph /\ -. M = 1 ) -> ( ( ( P ` 0 ) < ( P ` 1 ) /\ ( P ` 1 ) < ( P ` M ) ) -> ( P ` 0 ) < ( P ` M ) ) ) | 
						
							| 60 | 59 | expcomd |  |-  ( ( ph /\ -. M = 1 ) -> ( ( P ` 1 ) < ( P ` M ) -> ( ( P ` 0 ) < ( P ` 1 ) -> ( P ` 0 ) < ( P ` M ) ) ) ) | 
						
							| 61 | 38 60 | syld |  |-  ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( ( P ` 0 ) < ( P ` 1 ) -> ( P ` 0 ) < ( P ` M ) ) ) ) | 
						
							| 62 | 61 | com23 |  |-  ( ( ph /\ -. M = 1 ) -> ( ( P ` 0 ) < ( P ` 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 0 ) < ( P ` M ) ) ) ) | 
						
							| 63 | 35 62 | syld |  |-  ( ( ph /\ -. M = 1 ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 0 ) < ( P ` M ) ) ) ) | 
						
							| 64 | 63 | ex |  |-  ( ph -> ( -. M = 1 -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( P ` 0 ) < ( P ` M ) ) ) ) ) | 
						
							| 65 | 64 | com24 |  |-  ( ph -> ( A. i e. ( 1 ..^ M ) ( P ` i ) < ( P ` M ) -> ( A. i e. ( 1 ..^ M ) ( P ` 0 ) < ( P ` i ) -> ( -. M = 1 -> ( P ` 0 ) < ( P ` M ) ) ) ) ) | 
						
							| 66 | 16 17 65 | mp2d |  |-  ( ph -> ( -. M = 1 -> ( P ` 0 ) < ( P ` M ) ) ) | 
						
							| 67 | 66 | com12 |  |-  ( -. M = 1 -> ( ph -> ( P ` 0 ) < ( P ` M ) ) ) | 
						
							| 68 | 15 67 | pm2.61i |  |-  ( ph -> ( P ` 0 ) < ( P ` M ) ) |