| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 4 |  | elnn0uz |  |-  ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( M e. NN -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 7 |  | fzisfzounsn |  |-  ( M e. ( ZZ>= ` 0 ) -> ( 0 ... M ) = ( ( 0 ..^ M ) u. { M } ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( 0 ... M ) = ( ( 0 ..^ M ) u. { M } ) ) | 
						
							| 9 | 8 | eleq2d |  |-  ( ph -> ( i e. ( 0 ... M ) <-> i e. ( ( 0 ..^ M ) u. { M } ) ) ) | 
						
							| 10 |  | elun |  |-  ( i e. ( ( 0 ..^ M ) u. { M } ) <-> ( i e. ( 0 ..^ M ) \/ i e. { M } ) ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( i e. ( ( 0 ..^ M ) u. { M } ) <-> ( i e. ( 0 ..^ M ) \/ i e. { M } ) ) ) | 
						
							| 12 |  | velsn |  |-  ( i e. { M } <-> i = M ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( i e. { M } <-> i = M ) ) | 
						
							| 14 | 13 | orbi2d |  |-  ( ph -> ( ( i e. ( 0 ..^ M ) \/ i e. { M } ) <-> ( i e. ( 0 ..^ M ) \/ i = M ) ) ) | 
						
							| 15 | 9 11 14 | 3bitrd |  |-  ( ph -> ( i e. ( 0 ... M ) <-> ( i e. ( 0 ..^ M ) \/ i = M ) ) ) | 
						
							| 16 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> M e. NN ) | 
						
							| 17 | 2 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 18 |  | fzossfz |  |-  ( 0 ..^ M ) C_ ( 0 ... M ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> ( 0 ..^ M ) C_ ( 0 ... M ) ) | 
						
							| 20 | 19 | sselda |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 21 | 16 17 20 | iccpartxr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( P ` i ) e. RR* ) | 
						
							| 22 |  | nn0fz0 |  |-  ( M e. NN0 <-> M e. ( 0 ... M ) ) | 
						
							| 23 | 3 22 | sylib |  |-  ( M e. NN -> M e. ( 0 ... M ) ) | 
						
							| 24 | 1 23 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 25 | 1 2 24 | iccpartxr |  |-  ( ph -> ( P ` M ) e. RR* ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( P ` M ) e. RR* ) | 
						
							| 27 | 1 2 | iccpartltu |  |-  ( ph -> A. k e. ( 0 ..^ M ) ( P ` k ) < ( P ` M ) ) | 
						
							| 28 |  | fveq2 |  |-  ( k = i -> ( P ` k ) = ( P ` i ) ) | 
						
							| 29 | 28 | breq1d |  |-  ( k = i -> ( ( P ` k ) < ( P ` M ) <-> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 30 | 29 | rspccv |  |-  ( A. k e. ( 0 ..^ M ) ( P ` k ) < ( P ` M ) -> ( i e. ( 0 ..^ M ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 31 | 27 30 | syl |  |-  ( ph -> ( i e. ( 0 ..^ M ) -> ( P ` i ) < ( P ` M ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( P ` i ) < ( P ` M ) ) | 
						
							| 33 | 21 26 32 | xrltled |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( P ` i ) <_ ( P ` M ) ) | 
						
							| 34 | 33 | expcom |  |-  ( i e. ( 0 ..^ M ) -> ( ph -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( i = M -> ( P ` i ) = ( P ` M ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( i = M /\ ph ) -> ( P ` i ) = ( P ` M ) ) | 
						
							| 37 | 25 | xrleidd |  |-  ( ph -> ( P ` M ) <_ ( P ` M ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( i = M /\ ph ) -> ( P ` M ) <_ ( P ` M ) ) | 
						
							| 39 | 36 38 | eqbrtrd |  |-  ( ( i = M /\ ph ) -> ( P ` i ) <_ ( P ` M ) ) | 
						
							| 40 | 39 | ex |  |-  ( i = M -> ( ph -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 41 | 34 40 | jaoi |  |-  ( ( i e. ( 0 ..^ M ) \/ i = M ) -> ( ph -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 42 | 41 | com12 |  |-  ( ph -> ( ( i e. ( 0 ..^ M ) \/ i = M ) -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 43 | 15 42 | sylbid |  |-  ( ph -> ( i e. ( 0 ... M ) -> ( P ` i ) <_ ( P ` M ) ) ) | 
						
							| 44 | 43 | ralrimiv |  |-  ( ph -> A. i e. ( 0 ... M ) ( P ` i ) <_ ( P ` M ) ) |