| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | elnn0uz | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 7 |  | fzisfzounsn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ... 𝑀 )  =  ( ( 0 ..^ 𝑀 )  ∪  { 𝑀 } ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  =  ( ( 0 ..^ 𝑀 )  ∪  { 𝑀 } ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↔  𝑖  ∈  ( ( 0 ..^ 𝑀 )  ∪  { 𝑀 } ) ) ) | 
						
							| 10 |  | elun | ⊢ ( 𝑖  ∈  ( ( 0 ..^ 𝑀 )  ∪  { 𝑀 } )  ↔  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  ∈  { 𝑀 } ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( ( 0 ..^ 𝑀 )  ∪  { 𝑀 } )  ↔  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  ∈  { 𝑀 } ) ) ) | 
						
							| 12 |  | velsn | ⊢ ( 𝑖  ∈  { 𝑀 }  ↔  𝑖  =  𝑀 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝑀 }  ↔  𝑖  =  𝑀 ) ) | 
						
							| 14 | 13 | orbi2d | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  ∈  { 𝑀 } )  ↔  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  =  𝑀 ) ) ) | 
						
							| 15 | 9 11 14 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↔  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  =  𝑀 ) ) ) | 
						
							| 16 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 17 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 18 |  | fzossfz | ⊢ ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 20 | 19 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 21 | 16 17 20 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 22 |  | nn0fz0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 23 | 3 22 | sylib | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 25 | 1 2 24 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 27 | 1 2 | iccpartltu | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 29 | 28 | breq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 30 | 29 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 )  <  ( 𝑃 ‘ 𝑀 )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 31 | 27 30 | syl | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 33 | 21 26 32 | xrltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 34 | 33 | expcom | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑖  =  𝑀  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 37 | 25 | xrleidd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑖  =  𝑀  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑀 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 39 | 36 38 | eqbrtrd | ⊢ ( ( 𝑖  =  𝑀  ∧  𝜑 )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝑖  =  𝑀  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 41 | 34 40 | jaoi | ⊢ ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  =  𝑀 )  →  ( 𝜑  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∨  𝑖  =  𝑀 )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 43 | 15 42 | sylbid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 44 | 43 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) |