| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | elnn0uz | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 6 |  | fzpred | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ... 𝑀 )  =  ( { 0 }  ∪  ( ( 0  +  1 ) ... 𝑀 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  =  ( { 0 }  ∪  ( ( 0  +  1 ) ... 𝑀 ) ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↔  𝑖  ∈  ( { 0 }  ∪  ( ( 0  +  1 ) ... 𝑀 ) ) ) ) | 
						
							| 9 |  | elun | ⊢ ( 𝑖  ∈  ( { 0 }  ∪  ( ( 0  +  1 ) ... 𝑀 ) )  ↔  ( 𝑖  ∈  { 0 }  ∨  𝑖  ∈  ( ( 0  +  1 ) ... 𝑀 ) ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( { 0 }  ∪  ( ( 0  +  1 ) ... 𝑀 ) )  ↔  ( 𝑖  ∈  { 0 }  ∨  𝑖  ∈  ( ( 0  +  1 ) ... 𝑀 ) ) ) ) | 
						
							| 11 |  | velsn | ⊢ ( 𝑖  ∈  { 0 }  ↔  𝑖  =  0 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 0 }  ↔  𝑖  =  0 ) ) | 
						
							| 13 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 0  +  1 )  =  1 ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝜑  →  ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( ( 0  +  1 ) ... 𝑀 )  ↔  𝑖  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 17 | 12 16 | orbi12d | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  { 0 }  ∨  𝑖  ∈  ( ( 0  +  1 ) ... 𝑀 ) )  ↔  ( 𝑖  =  0  ∨  𝑖  ∈  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 18 | 8 10 17 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↔  ( 𝑖  =  0  ∨  𝑖  ∈  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 19 |  | 0elfz | ⊢ ( 𝑀  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 21 | 1 2 20 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 22 | 21 | xrleidd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 0 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 24 | 23 | breq2d | ⊢ ( 𝑖  =  0  →  ( ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 )  ↔  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 0 ) ) ) | 
						
							| 25 | 22 24 | imbitrrid | ⊢ ( 𝑖  =  0  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 26 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 27 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 28 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 29 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 31 |  | elnn0uz | ⊢ ( 1  ∈  ℕ0  ↔  1  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 32 | 30 31 | sylib | ⊢ ( 𝜑  →  1  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 33 |  | fzss1 | ⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( 1 ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 35 | 34 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 36 | 27 28 35 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 37 | 1 2 | iccpartgtl | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 39 | 38 | breq2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 40 | 39 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑘 )  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 41 | 37 40 | syl | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 0 )  <  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 43 | 26 36 42 | xrltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 44 | 43 | expcom | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 45 | 25 44 | jaoi | ⊢ ( ( 𝑖  =  0  ∨  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝜑  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 46 | 45 | com12 | ⊢ ( 𝜑  →  ( ( 𝑖  =  0  ∨  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 47 | 18 46 | sylbid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 48 | 47 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) |