| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | iccpart | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 5 |  | elmapfn | ⊢ ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 7 | 4 6 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) ) | 
						
							| 8 | 2 7 | mpd | ⊢ ( 𝜑  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 9 |  | fvelrnb | ⊢ ( 𝑃  Fn  ( 0 ... 𝑀 )  →  ( 𝑝  ∈  ran  𝑃  ↔  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 )  =  𝑝 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 𝑝  ∈  ran  𝑃  ↔  ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 )  =  𝑝 ) ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 14 | 11 12 13 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 15 | 1 2 | iccpartgel | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 17 | 16 | breq2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 18 | 17 | rspcva | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑘 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 19 | 18 | expcom | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑘 )  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 20 | 15 19 | syl | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 22 | 1 2 | iccpartleu | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 23 | 16 | breq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 24 | 23 | rspcva | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 25 | 24 | expcom | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 )  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 26 | 22 25 | syl | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 28 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 29 |  | 0elfz | ⊢ ( 𝑀  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 30 | 1 28 29 | 3syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 31 | 1 2 30 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 32 |  | nn0fz0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 33 | 28 32 | sylib | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 34 | 1 33 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 35 | 1 2 34 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 36 | 31 35 | jca | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) ) | 
						
							| 38 |  | elicc1 | ⊢ ( ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝑖 )  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) )  ↔  ( ( 𝑃 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 )  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) )  ↔  ( ( 𝑃 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ 𝑖 )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 40 | 14 21 27 39 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 41 |  | eleq1 | ⊢ ( ( 𝑃 ‘ 𝑖 )  =  𝑝  →  ( ( 𝑃 ‘ 𝑖 )  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) )  ↔  𝑝  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 42 | 40 41 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 )  =  𝑝  →  𝑝  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 )  =  𝑝  →  𝑝  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 44 | 10 43 | sylbid | ⊢ ( 𝜑  →  ( 𝑝  ∈  ran  𝑃  →  𝑝  ∈  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 45 | 44 | ssrdv | ⊢ ( 𝜑  →  ran  𝑃  ⊆  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) |