| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | iccpart | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 4 |  | elmapfn | ⊢ ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 6 | 3 5 | biimtrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) ) | 
						
							| 7 | 1 2 6 | sylc | ⊢ ( 𝜑  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 8 | 1 2 | iccpartrn | ⊢ ( 𝜑  →  ran  𝑃  ⊆  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 9 |  | df-f | ⊢ ( 𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) )  ↔  ( 𝑃  Fn  ( 0 ... 𝑀 )  ∧  ran  𝑃  ⊆  ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 10 | 7 8 9 | sylanbrc | ⊢ ( 𝜑  →  𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) |