| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfudiag1.i |
|- I = ( idFunc ` C ) |
| 2 |
|
idfudiag1.l |
|- L = ( C DiagFunc C ) |
| 3 |
|
idfudiag1.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
idfudiag1.b |
|- B = ( Base ` C ) |
| 5 |
|
idfudiag1.x |
|- ( ph -> X e. B ) |
| 6 |
|
idfudiag1.k |
|- K = ( ( 1st ` L ) ` X ) |
| 7 |
|
idfudiag1.e |
|- ( ph -> I = K ) |
| 8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 9 |
1 4 3 8
|
idfuval |
|- ( ph -> I = <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. ) |
| 10 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 11 |
2 3 3 4 5 6 4 8 10
|
diag1a |
|- ( ph -> K = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 12 |
7 9 11
|
3eqtr3d |
|- ( ph -> <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 13 |
4
|
fvexi |
|- B e. _V |
| 14 |
|
resiexg |
|- ( B e. _V -> ( _I |` B ) e. _V ) |
| 15 |
13 14
|
ax-mp |
|- ( _I |` B ) e. _V |
| 16 |
13 13
|
xpex |
|- ( B X. B ) e. _V |
| 17 |
16
|
mptex |
|- ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) e. _V |
| 18 |
15 17
|
opth1 |
|- ( <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. -> ( _I |` B ) = ( B X. { X } ) ) |
| 19 |
12 18
|
syl |
|- ( ph -> ( _I |` B ) = ( B X. { X } ) ) |
| 20 |
5
|
ne0d |
|- ( ph -> B =/= (/) ) |
| 21 |
19 20
|
idfudiag1lem |
|- ( ph -> B = { X } ) |