Metamath Proof Explorer


Theorem idfudiag1bas

Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses idfudiag1.i
|- I = ( idFunc ` C )
idfudiag1.l
|- L = ( C DiagFunc C )
idfudiag1.c
|- ( ph -> C e. Cat )
idfudiag1.b
|- B = ( Base ` C )
idfudiag1.x
|- ( ph -> X e. B )
idfudiag1.k
|- K = ( ( 1st ` L ) ` X )
idfudiag1.e
|- ( ph -> I = K )
Assertion idfudiag1bas
|- ( ph -> B = { X } )

Proof

Step Hyp Ref Expression
1 idfudiag1.i
 |-  I = ( idFunc ` C )
2 idfudiag1.l
 |-  L = ( C DiagFunc C )
3 idfudiag1.c
 |-  ( ph -> C e. Cat )
4 idfudiag1.b
 |-  B = ( Base ` C )
5 idfudiag1.x
 |-  ( ph -> X e. B )
6 idfudiag1.k
 |-  K = ( ( 1st ` L ) ` X )
7 idfudiag1.e
 |-  ( ph -> I = K )
8 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
9 1 4 3 8 idfuval
 |-  ( ph -> I = <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. )
10 eqid
 |-  ( Id ` C ) = ( Id ` C )
11 2 3 3 4 5 6 4 8 10 diag1a
 |-  ( ph -> K = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. )
12 7 9 11 3eqtr3d
 |-  ( ph -> <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. )
13 4 fvexi
 |-  B e. _V
14 resiexg
 |-  ( B e. _V -> ( _I |` B ) e. _V )
15 13 14 ax-mp
 |-  ( _I |` B ) e. _V
16 13 13 xpex
 |-  ( B X. B ) e. _V
17 16 mptex
 |-  ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) e. _V
18 15 17 opth1
 |-  ( <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. -> ( _I |` B ) = ( B X. { X } ) )
19 12 18 syl
 |-  ( ph -> ( _I |` B ) = ( B X. { X } ) )
20 5 ne0d
 |-  ( ph -> B =/= (/) )
21 19 20 idfudiag1lem
 |-  ( ph -> B = { X } )