| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfudiag1.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
idfudiag1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐶 ) |
| 3 |
|
idfudiag1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
idfudiag1.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 5 |
|
idfudiag1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
idfudiag1.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 7 |
|
idfudiag1.e |
⊢ ( 𝜑 → 𝐼 = 𝐾 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 9 |
1 4 3 8
|
idfuval |
⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 ) |
| 10 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 11 |
2 3 3 4 5 6 4 8 10
|
diag1a |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 12 |
7 9 11
|
3eqtr3d |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 13 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 14 |
|
resiexg |
⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) |
| 15 |
13 14
|
ax-mp |
⊢ ( I ↾ 𝐵 ) ∈ V |
| 16 |
13 13
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 17 |
16
|
mptex |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ∈ V |
| 18 |
15 17
|
opth1 |
⊢ ( 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 → ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) ) |
| 19 |
12 18
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) ) |
| 20 |
5
|
ne0d |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 21 |
19 20
|
idfudiag1lem |
⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |