Metamath Proof Explorer


Theorem idfudiag1bas

Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses idfudiag1.i 𝐼 = ( idfunc𝐶 )
idfudiag1.l 𝐿 = ( 𝐶 Δfunc 𝐶 )
idfudiag1.c ( 𝜑𝐶 ∈ Cat )
idfudiag1.b 𝐵 = ( Base ‘ 𝐶 )
idfudiag1.x ( 𝜑𝑋𝐵 )
idfudiag1.k 𝐾 = ( ( 1st𝐿 ) ‘ 𝑋 )
idfudiag1.e ( 𝜑𝐼 = 𝐾 )
Assertion idfudiag1bas ( 𝜑𝐵 = { 𝑋 } )

Proof

Step Hyp Ref Expression
1 idfudiag1.i 𝐼 = ( idfunc𝐶 )
2 idfudiag1.l 𝐿 = ( 𝐶 Δfunc 𝐶 )
3 idfudiag1.c ( 𝜑𝐶 ∈ Cat )
4 idfudiag1.b 𝐵 = ( Base ‘ 𝐶 )
5 idfudiag1.x ( 𝜑𝑋𝐵 )
6 idfudiag1.k 𝐾 = ( ( 1st𝐿 ) ‘ 𝑋 )
7 idfudiag1.e ( 𝜑𝐼 = 𝐾 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 1 4 3 8 idfuval ( 𝜑𝐼 = ⟨ ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ⟩ )
10 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
11 2 3 3 4 5 6 4 8 10 diag1a ( 𝜑𝐾 = ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑦𝐵 , 𝑧𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ )
12 7 9 11 3eqtr3d ( 𝜑 → ⟨ ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ⟩ = ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑦𝐵 , 𝑧𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ )
13 4 fvexi 𝐵 ∈ V
14 resiexg ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V )
15 13 14 ax-mp ( I ↾ 𝐵 ) ∈ V
16 13 13 xpex ( 𝐵 × 𝐵 ) ∈ V
17 16 mptex ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ∈ V
18 15 17 opth1 ( ⟨ ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ⟩ = ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑦𝐵 , 𝑧𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ → ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) )
19 12 18 syl ( 𝜑 → ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) )
20 5 ne0d ( 𝜑𝐵 ≠ ∅ )
21 19 20 idfudiag1lem ( 𝜑𝐵 = { 𝑋 } )