| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfudiag1.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
idfudiag1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐶 ) |
| 3 |
|
idfudiag1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
idfudiag1.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 5 |
|
idfudiag1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
idfudiag1.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 7 |
|
idfudiag1.e |
⊢ ( 𝜑 → 𝐼 = 𝐾 ) |
| 8 |
4
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 9 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 𝑦 , 𝑧 〉 ) ) |
| 11 |
|
df-ov |
⊢ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 𝑦 , 𝑧 〉 ) |
| 12 |
10 11
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 13 |
12
|
reseq2d |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) = ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 14 |
13
|
mpompt |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) |
| 16 |
|
ovex |
⊢ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∈ V |
| 17 |
|
resiexg |
⊢ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∈ V → ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∈ V ) |
| 18 |
16 17
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∈ V ) |
| 19 |
15 18
|
ovmpt4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 𝑧 ) = ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 21 |
1 4 3 20
|
idfuval |
⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 ) |
| 22 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 23 |
2 3 3 4 5 6 4 20 22
|
diag1a |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 24 |
7 21 23
|
3eqtr3d |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 25 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 26 |
|
resiexg |
⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) |
| 27 |
25 26
|
ax-mp |
⊢ ( I ↾ 𝐵 ) ∈ V |
| 28 |
25 25
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 29 |
28
|
mptex |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ∈ V |
| 30 |
27 29
|
opth |
⊢ ( 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ↔ ( ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) ∧ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ) ) |
| 31 |
30
|
simprbi |
⊢ ( 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 → ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ) |
| 32 |
24 31
|
syl |
⊢ ( 𝜑 → ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ) |
| 33 |
|
snex |
⊢ { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ∈ V |
| 34 |
16 33
|
xpex |
⊢ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ∈ V |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ∈ V ) |
| 36 |
32 35
|
ovmpt4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 𝑧 ) = ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) |
| 37 |
19 36
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( I ↾ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) = ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) |
| 38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐶 ∈ Cat ) |
| 39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 40 |
4 20 22 38 39
|
catidcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 41 |
1 2 3 4 5 6 7
|
idfudiag1bas |
⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐵 = { 𝑋 } ) |
| 43 |
39 42
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ { 𝑋 } ) |
| 44 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 = 𝑋 ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 = 𝑋 ) |
| 46 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 47 |
46 42
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ { 𝑋 } ) |
| 48 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 = 𝑋 ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 = 𝑋 ) |
| 50 |
45 49
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 = 𝑧 ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 52 |
40 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 53 |
52
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ≠ ∅ ) |
| 54 |
37 53
|
idfudiag1lem |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) |
| 55 |
|
mosn |
⊢ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 57 |
8 9 56 3
|
isthincd |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 58 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
| 59 |
58
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 = { 𝑥 } ↔ 𝐵 = { 𝑋 } ) ) |
| 60 |
5 41 59
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |
| 61 |
4
|
istermc |
⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 62 |
57 60 61
|
sylanbrc |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |