Step |
Hyp |
Ref |
Expression |
1 |
|
idlnegcl.1 |
|- G = ( 1st ` R ) |
2 |
|
idlnegcl.2 |
|- N = ( inv ` G ) |
3 |
|
eqid |
|- ran G = ran G |
4 |
1 3
|
idlss |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran G ) |
5 |
|
ssel2 |
|- ( ( I C_ ran G /\ A e. I ) -> A e. ran G ) |
6 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
7 |
|
eqid |
|- ( GId ` ( 2nd ` R ) ) = ( GId ` ( 2nd ` R ) ) |
8 |
1 6 3 2 7
|
rngonegmn1l |
|- ( ( R e. RingOps /\ A e. ran G ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
9 |
5 8
|
sylan2 |
|- ( ( R e. RingOps /\ ( I C_ ran G /\ A e. I ) ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
10 |
9
|
anassrs |
|- ( ( ( R e. RingOps /\ I C_ ran G ) /\ A e. I ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
11 |
4 10
|
syldanl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
12 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
13 |
12 6 7
|
rngo1cl |
|- ( R e. RingOps -> ( GId ` ( 2nd ` R ) ) e. ran G ) |
14 |
1 3 2
|
rngonegcl |
|- ( ( R e. RingOps /\ ( GId ` ( 2nd ` R ) ) e. ran G ) -> ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) |
15 |
13 14
|
mpdan |
|- ( R e. RingOps -> ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) |
16 |
15
|
ad2antrr |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) |
17 |
1 6 3
|
idllmulcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) ) -> ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) e. I ) |
18 |
17
|
anassrs |
|- ( ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) /\ ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) -> ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) e. I ) |
19 |
16 18
|
mpdan |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) e. I ) |
20 |
11 19
|
eqeltrd |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( N ` A ) e. I ) |