| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlnegcl.1 |
|- G = ( 1st ` R ) |
| 2 |
|
idlnegcl.2 |
|- N = ( inv ` G ) |
| 3 |
|
eqid |
|- ran G = ran G |
| 4 |
1 3
|
idlss |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran G ) |
| 5 |
|
ssel2 |
|- ( ( I C_ ran G /\ A e. I ) -> A e. ran G ) |
| 6 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
| 7 |
|
eqid |
|- ( GId ` ( 2nd ` R ) ) = ( GId ` ( 2nd ` R ) ) |
| 8 |
1 6 3 2 7
|
rngonegmn1l |
|- ( ( R e. RingOps /\ A e. ran G ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
| 9 |
5 8
|
sylan2 |
|- ( ( R e. RingOps /\ ( I C_ ran G /\ A e. I ) ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
| 10 |
9
|
anassrs |
|- ( ( ( R e. RingOps /\ I C_ ran G ) /\ A e. I ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
| 11 |
4 10
|
syldanl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( N ` A ) = ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) ) |
| 12 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
| 13 |
12 6 7
|
rngo1cl |
|- ( R e. RingOps -> ( GId ` ( 2nd ` R ) ) e. ran G ) |
| 14 |
1 3 2
|
rngonegcl |
|- ( ( R e. RingOps /\ ( GId ` ( 2nd ` R ) ) e. ran G ) -> ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) |
| 15 |
13 14
|
mpdan |
|- ( R e. RingOps -> ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) |
| 17 |
1 6 3
|
idllmulcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) ) -> ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) e. I ) |
| 18 |
17
|
anassrs |
|- ( ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) /\ ( N ` ( GId ` ( 2nd ` R ) ) ) e. ran G ) -> ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) e. I ) |
| 19 |
16 18
|
mpdan |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( ( N ` ( GId ` ( 2nd ` R ) ) ) ( 2nd ` R ) A ) e. I ) |
| 20 |
11 19
|
eqeltrd |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> ( N ` A ) e. I ) |