| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsubcl.1 |
|- G = ( 1st ` R ) |
| 2 |
|
idlsubcl.2 |
|- D = ( /g ` G ) |
| 3 |
|
eqid |
|- ran G = ran G |
| 4 |
1 3
|
idlcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> A e. ran G ) |
| 5 |
1 3
|
idlcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ B e. I ) -> B e. ran G ) |
| 6 |
4 5
|
anim12dan |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> ( A e. ran G /\ B e. ran G ) ) |
| 7 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
| 8 |
1 3 7 2
|
rngosub |
|- ( ( R e. RingOps /\ A e. ran G /\ B e. ran G ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) |
| 9 |
8
|
3expb |
|- ( ( R e. RingOps /\ ( A e. ran G /\ B e. ran G ) ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) |
| 10 |
9
|
adantlr |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. ran G /\ B e. ran G ) ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) |
| 11 |
6 10
|
syldan |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) |
| 12 |
|
simprl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> A e. I ) |
| 13 |
1 7
|
idlnegcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ B e. I ) -> ( ( inv ` G ) ` B ) e. I ) |
| 14 |
13
|
adantrl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> ( ( inv ` G ) ` B ) e. I ) |
| 15 |
12 14
|
jca |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> ( A e. I /\ ( ( inv ` G ) ` B ) e. I ) ) |
| 16 |
1
|
idladdcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ ( ( inv ` G ) ` B ) e. I ) ) -> ( A G ( ( inv ` G ) ` B ) ) e. I ) |
| 17 |
15 16
|
syldan |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> ( A G ( ( inv ` G ) ` B ) ) e. I ) |
| 18 |
11 17
|
eqeltrd |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( A e. I /\ B e. I ) ) -> ( A D B ) e. I ) |