| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsubcl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
idlsubcl.2 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ran 𝐺 = ran 𝐺 |
| 4 |
1 3
|
idlcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ ran 𝐺 ) |
| 5 |
1 3
|
idlcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐵 ∈ 𝐼 ) → 𝐵 ∈ ran 𝐺 ) |
| 6 |
4 5
|
anim12dan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → ( 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺 ) ) |
| 7 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
| 8 |
1 3 7 2
|
rngosub |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 9 |
8
|
3expb |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 10 |
9
|
adantlr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ran 𝐺 ∧ 𝐵 ∈ ran 𝐺 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 11 |
6 10
|
syldan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 12 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → 𝐴 ∈ 𝐼 ) |
| 13 |
1 7
|
idlnegcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐵 ∈ 𝐼 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝐼 ) |
| 14 |
13
|
adantrl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝐼 ) |
| 15 |
12 14
|
jca |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → ( 𝐴 ∈ 𝐼 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝐼 ) ) |
| 16 |
1
|
idladdcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝐼 ) ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝐼 ) |
| 17 |
15 16
|
syldan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝐼 ) |
| 18 |
11 17
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝐼 ) |