Metamath Proof Explorer


Theorem idlsubcl

Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses idlsubcl.1 G = 1 st R
idlsubcl.2 D = / g G
Assertion idlsubcl R RingOps I Idl R A I B I A D B I

Proof

Step Hyp Ref Expression
1 idlsubcl.1 G = 1 st R
2 idlsubcl.2 D = / g G
3 eqid ran G = ran G
4 1 3 idlcl R RingOps I Idl R A I A ran G
5 1 3 idlcl R RingOps I Idl R B I B ran G
6 4 5 anim12dan R RingOps I Idl R A I B I A ran G B ran G
7 eqid inv G = inv G
8 1 3 7 2 rngosub R RingOps A ran G B ran G A D B = A G inv G B
9 8 3expb R RingOps A ran G B ran G A D B = A G inv G B
10 9 adantlr R RingOps I Idl R A ran G B ran G A D B = A G inv G B
11 6 10 syldan R RingOps I Idl R A I B I A D B = A G inv G B
12 simprl R RingOps I Idl R A I B I A I
13 1 7 idlnegcl R RingOps I Idl R B I inv G B I
14 13 adantrl R RingOps I Idl R A I B I inv G B I
15 12 14 jca R RingOps I Idl R A I B I A I inv G B I
16 1 idladdcl R RingOps I Idl R A I inv G B I A G inv G B I
17 15 16 syldan R RingOps I Idl R A I B I A G inv G B I
18 11 17 eqeltrd R RingOps I Idl R A I B I A D B I