Metamath Proof Explorer


Theorem idlsubcl

Description: An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses idlsubcl.1 G=1stR
idlsubcl.2 D=/gG
Assertion idlsubcl RRingOpsIIdlRAIBIADBI

Proof

Step Hyp Ref Expression
1 idlsubcl.1 G=1stR
2 idlsubcl.2 D=/gG
3 eqid ranG=ranG
4 1 3 idlcl RRingOpsIIdlRAIAranG
5 1 3 idlcl RRingOpsIIdlRBIBranG
6 4 5 anim12dan RRingOpsIIdlRAIBIAranGBranG
7 eqid invG=invG
8 1 3 7 2 rngosub RRingOpsAranGBranGADB=AGinvGB
9 8 3expb RRingOpsAranGBranGADB=AGinvGB
10 9 adantlr RRingOpsIIdlRAranGBranGADB=AGinvGB
11 6 10 syldan RRingOpsIIdlRAIBIADB=AGinvGB
12 simprl RRingOpsIIdlRAIBIAI
13 1 7 idlnegcl RRingOpsIIdlRBIinvGBI
14 13 adantrl RRingOpsIIdlRAIBIinvGBI
15 12 14 jca RRingOpsIIdlRAIBIAIinvGBI
16 1 idladdcl RRingOpsIIdlRAIinvGBIAGinvGBI
17 15 16 syldan RRingOpsIIdlRAIBIAGinvGBI
18 11 17 eqeltrd RRingOpsIIdlRAIBIADBI