| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismot.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismot.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | motgrp.1 |  |-  ( ph -> G e. V ) | 
						
							| 4 |  | f1oi |  |-  ( _I |` P ) : P -1-1-onto-> P | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( _I |` P ) : P -1-1-onto-> P ) | 
						
							| 6 |  | fvresi |  |-  ( a e. P -> ( ( _I |` P ) ` a ) = a ) | 
						
							| 7 | 6 | ad2antrl |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( _I |` P ) ` a ) = a ) | 
						
							| 8 |  | fvresi |  |-  ( b e. P -> ( ( _I |` P ) ` b ) = b ) | 
						
							| 9 | 8 | ad2antll |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( _I |` P ) ` b ) = b ) | 
						
							| 10 | 7 9 | oveq12d |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) | 
						
							| 11 | 10 | ralrimivva |  |-  ( ph -> A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) | 
						
							| 12 | 1 2 | ismot |  |-  ( G e. V -> ( ( _I |` P ) e. ( G Ismt G ) <-> ( ( _I |` P ) : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( G e. V /\ ( ( _I |` P ) : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) ) -> ( _I |` P ) e. ( G Ismt G ) ) | 
						
							| 14 | 3 5 11 13 | syl12anc |  |-  ( ph -> ( _I |` P ) e. ( G Ismt G ) ) |