| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismot.p |
|- P = ( Base ` G ) |
| 2 |
|
ismot.m |
|- .- = ( dist ` G ) |
| 3 |
|
motgrp.1 |
|- ( ph -> G e. V ) |
| 4 |
|
f1oi |
|- ( _I |` P ) : P -1-1-onto-> P |
| 5 |
4
|
a1i |
|- ( ph -> ( _I |` P ) : P -1-1-onto-> P ) |
| 6 |
|
fvresi |
|- ( a e. P -> ( ( _I |` P ) ` a ) = a ) |
| 7 |
6
|
ad2antrl |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( _I |` P ) ` a ) = a ) |
| 8 |
|
fvresi |
|- ( b e. P -> ( ( _I |` P ) ` b ) = b ) |
| 9 |
8
|
ad2antll |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( _I |` P ) ` b ) = b ) |
| 10 |
7 9
|
oveq12d |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) |
| 11 |
10
|
ralrimivva |
|- ( ph -> A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) |
| 12 |
1 2
|
ismot |
|- ( G e. V -> ( ( _I |` P ) e. ( G Ismt G ) <-> ( ( _I |` P ) : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) ) ) |
| 13 |
12
|
biimpar |
|- ( ( G e. V /\ ( ( _I |` P ) : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( ( _I |` P ) ` a ) .- ( ( _I |` P ) ` b ) ) = ( a .- b ) ) ) -> ( _I |` P ) e. ( G Ismt G ) ) |
| 14 |
3 5 11 13
|
syl12anc |
|- ( ph -> ( _I |` P ) e. ( G Ismt G ) ) |