Step |
Hyp |
Ref |
Expression |
1 |
|
cnvresid |
|- `' ( _I |` X ) = ( _I |` X ) |
2 |
1
|
imaeq1i |
|- ( `' ( _I |` X ) " x ) = ( ( _I |` X ) " x ) |
3 |
|
resiima |
|- ( x C_ X -> ( ( _I |` X ) " x ) = x ) |
4 |
3
|
adantl |
|- ( ( J e. ( TopOn ` X ) /\ x C_ X ) -> ( ( _I |` X ) " x ) = x ) |
5 |
2 4
|
eqtrid |
|- ( ( J e. ( TopOn ` X ) /\ x C_ X ) -> ( `' ( _I |` X ) " x ) = x ) |
6 |
5
|
eleq1d |
|- ( ( J e. ( TopOn ` X ) /\ x C_ X ) -> ( ( `' ( _I |` X ) " x ) e. J <-> x e. J ) ) |
7 |
6
|
pm5.32da |
|- ( J e. ( TopOn ` X ) -> ( ( x C_ X /\ ( `' ( _I |` X ) " x ) e. J ) <-> ( x C_ X /\ x e. J ) ) ) |
8 |
|
f1oi |
|- ( _I |` X ) : X -1-1-onto-> X |
9 |
|
f1ofo |
|- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -onto-> X ) |
10 |
8 9
|
mp1i |
|- ( J e. ( TopOn ` X ) -> ( _I |` X ) : X -onto-> X ) |
11 |
|
elqtop3 |
|- ( ( J e. ( TopOn ` X ) /\ ( _I |` X ) : X -onto-> X ) -> ( x e. ( J qTop ( _I |` X ) ) <-> ( x C_ X /\ ( `' ( _I |` X ) " x ) e. J ) ) ) |
12 |
10 11
|
mpdan |
|- ( J e. ( TopOn ` X ) -> ( x e. ( J qTop ( _I |` X ) ) <-> ( x C_ X /\ ( `' ( _I |` X ) " x ) e. J ) ) ) |
13 |
|
toponss |
|- ( ( J e. ( TopOn ` X ) /\ x e. J ) -> x C_ X ) |
14 |
13
|
ex |
|- ( J e. ( TopOn ` X ) -> ( x e. J -> x C_ X ) ) |
15 |
14
|
pm4.71rd |
|- ( J e. ( TopOn ` X ) -> ( x e. J <-> ( x C_ X /\ x e. J ) ) ) |
16 |
7 12 15
|
3bitr4d |
|- ( J e. ( TopOn ` X ) -> ( x e. ( J qTop ( _I |` X ) ) <-> x e. J ) ) |
17 |
16
|
eqrdv |
|- ( J e. ( TopOn ` X ) -> ( J qTop ( _I |` X ) ) = J ) |