Metamath Proof Explorer


Theorem idrespermg

Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypotheses idressubgsymg.g
|- G = ( SymGrp ` A )
idrespermg.e
|- E = ( G |`s { ( _I |` A ) } )
Assertion idrespermg
|- ( A e. V -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) )

Proof

Step Hyp Ref Expression
1 idressubgsymg.g
 |-  G = ( SymGrp ` A )
2 idrespermg.e
 |-  E = ( G |`s { ( _I |` A ) } )
3 1 idressubgsymg
 |-  ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) )
4 eqid
 |-  ( Base ` G ) = ( Base ` G )
5 1 4 pgrpsubgsymgbi
 |-  ( A e. V -> ( { ( _I |` A ) } e. ( SubGrp ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) ) )
6 snex
 |-  { ( _I |` A ) } e. _V
7 2 4 ressbas
 |-  ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) )
8 6 7 mp1i
 |-  ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) )
9 inss2
 |-  ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G )
10 8 9 eqsstrrdi
 |-  ( A e. V -> ( Base ` E ) C_ ( Base ` G ) )
11 2 eqcomi
 |-  ( G |`s { ( _I |` A ) } ) = E
12 11 eleq1i
 |-  ( ( G |`s { ( _I |` A ) } ) e. Grp <-> E e. Grp )
13 12 biimpi
 |-  ( ( G |`s { ( _I |` A ) } ) e. Grp -> E e. Grp )
14 13 adantl
 |-  ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) -> E e. Grp )
15 10 14 anim12ci
 |-  ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) )
16 15 ex
 |-  ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) )
17 5 16 sylbid
 |-  ( A e. V -> ( { ( _I |` A ) } e. ( SubGrp ` G ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) )
18 3 17 mpd
 |-  ( A e. V -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) )