Metamath Proof Explorer


Theorem iftrueb

Description: When the branches are not equal, an "if" condition results in the first branch if and only if its condition is true. (Contributed by SN, 16-Oct-2025)

Ref Expression
Assertion iftrueb
|- ( A =/= B -> ( if ( ph , A , B ) = A <-> ph ) )

Proof

Step Hyp Ref Expression
1 necom
 |-  ( A =/= B <-> B =/= A )
2 1 biimpi
 |-  ( A =/= B -> B =/= A )
3 iffalse
 |-  ( -. ph -> if ( ph , A , B ) = B )
4 3 neeq1d
 |-  ( -. ph -> ( if ( ph , A , B ) =/= A <-> B =/= A ) )
5 2 4 syl5ibrcom
 |-  ( A =/= B -> ( -. ph -> if ( ph , A , B ) =/= A ) )
6 5 necon4bd
 |-  ( A =/= B -> ( if ( ph , A , B ) = A -> ph ) )
7 iftrue
 |-  ( ph -> if ( ph , A , B ) = A )
8 6 7 impbid1
 |-  ( A =/= B -> ( if ( ph , A , B ) = A <-> ph ) )