Metamath Proof Explorer


Theorem iftrueb

Description: When the branches are not equal, an "if" condition results in the first branch if and only if its condition is true. (Contributed by SN, 16-Oct-2025)

Ref Expression
Assertion iftrueb A B if φ A B = A φ

Proof

Step Hyp Ref Expression
1 necom A B B A
2 1 biimpi A B B A
3 iffalse ¬ φ if φ A B = B
4 3 neeq1d ¬ φ if φ A B A B A
5 2 4 syl5ibrcom A B ¬ φ if φ A B A
6 5 necon4bd A B if φ A B = A φ
7 iftrue φ if φ A B = A
8 6 7 impbid1 A B if φ A B = A φ