Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq2 | |- ( B = C -> inf ( A , B , R ) = inf ( A , C , R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | supeq2 | |- ( B = C -> sup ( A , B , `' R ) = sup ( A , C , `' R ) ) | |
| 2 | df-inf | |- inf ( A , B , R ) = sup ( A , B , `' R ) | |
| 3 | df-inf | |- inf ( A , C , R ) = sup ( A , C , `' R ) | |
| 4 | 1 2 3 | 3eqtr4g | |- ( B = C -> inf ( A , B , R ) = inf ( A , C , R ) ) |