Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq2 | ⊢ ( 𝐵 = 𝐶 → inf ( 𝐴 , 𝐵 , 𝑅 ) = inf ( 𝐴 , 𝐶 , 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | supeq2 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐴 , 𝐵 , ◡ 𝑅 ) = sup ( 𝐴 , 𝐶 , ◡ 𝑅 ) ) | |
| 2 | df-inf | ⊢ inf ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐵 , ◡ 𝑅 ) | |
| 3 | df-inf | ⊢ inf ( 𝐴 , 𝐶 , 𝑅 ) = sup ( 𝐴 , 𝐶 , ◡ 𝑅 ) | |
| 4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐵 = 𝐶 → inf ( 𝐴 , 𝐵 , 𝑅 ) = inf ( 𝐴 , 𝐶 , 𝑅 ) ) |