Metamath Proof Explorer


Theorem supeq2

Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion supeq2 ( 𝐵 = 𝐶 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐶 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 rabeq ( 𝐵 = 𝐶 → { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥𝐶 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } )
2 raleq ( 𝐵 = 𝐶 → ( ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) )
3 2 anbi2d ( 𝐵 = 𝐶 → ( ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) ) )
4 3 rabbidv ( 𝐵 = 𝐶 → { 𝑥𝐶 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥𝐶 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } )
5 1 4 eqtrd ( 𝐵 = 𝐶 → { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥𝐶 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } )
6 5 unieqd ( 𝐵 = 𝐶 { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥𝐶 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) } )
7 df-sup sup ( 𝐴 , 𝐵 , 𝑅 ) = { 𝑥𝐵 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) }
8 df-sup sup ( 𝐴 , 𝐶 , 𝑅 ) = { 𝑥𝐶 ∣ ( ∀ 𝑦𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐴 𝑦 𝑅 𝑧 ) ) }
9 6 7 8 3eqtr4g ( 𝐵 = 𝐶 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐶 , 𝑅 ) )