Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
infeq2
Next ⟩
infeq3
Metamath Proof Explorer
Ascii
Unicode
Theorem
infeq2
Description:
Equality theorem for infimum.
(Contributed by
AV
, 2-Sep-2020)
Ref
Expression
Assertion
infeq2
⊢
B
=
C
→
sup
A
B
R
=
sup
A
C
R
Proof
Step
Hyp
Ref
Expression
1
supeq2
⊢
B
=
C
→
sup
A
B
R
-1
=
sup
A
C
R
-1
2
df-inf
⊢
sup
A
B
R
=
sup
A
B
R
-1
3
df-inf
⊢
sup
A
C
R
=
sup
A
C
R
-1
4
1
2
3
3eqtr4g
⊢
B
=
C
→
sup
A
B
R
=
sup
A
C
R