Metamath Proof Explorer


Theorem infeq2

Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Assertion infeq2 B = C sup A B R = sup A C R

Proof

Step Hyp Ref Expression
1 supeq2 B = C sup A B R -1 = sup A C R -1
2 df-inf sup A B R = sup A B R -1
3 df-inf sup A C R = sup A C R -1
4 1 2 3 3eqtr4g B = C sup A B R = sup A C R