Metamath Proof Explorer


Theorem infeq2

Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Assertion infeq2 B=CsupABR=supACR

Proof

Step Hyp Ref Expression
1 supeq2 B=CsupABR-1=supACR-1
2 df-inf supABR=supABR-1
3 df-inf supACR=supACR-1
4 1 2 3 3eqtr4g B=CsupABR=supACR