Metamath Proof Explorer


Theorem inintabss

Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion inintabss
|- ( A i^i |^| { x | ph } ) C_ |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ph ) }

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( u e. A -> ( E. x ph -> u e. A ) )
2 1 anim1i
 |-  ( ( u e. A /\ A. x ( ph -> u e. x ) ) -> ( ( E. x ph -> u e. A ) /\ A. x ( ph -> u e. x ) ) )
3 elinintab
 |-  ( u e. ( A i^i |^| { x | ph } ) <-> ( u e. A /\ A. x ( ph -> u e. x ) ) )
4 elinintrab
 |-  ( u e. _V -> ( u e. |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ph ) } <-> ( ( E. x ph -> u e. A ) /\ A. x ( ph -> u e. x ) ) ) )
5 4 elv
 |-  ( u e. |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ph ) } <-> ( ( E. x ph -> u e. A ) /\ A. x ( ph -> u e. x ) ) )
6 2 3 5 3imtr4i
 |-  ( u e. ( A i^i |^| { x | ph } ) -> u e. |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ph ) } )
7 6 ssriv
 |-  ( A i^i |^| { x | ph } ) C_ |^| { w e. ~P A | E. x ( w = ( A i^i x ) /\ ph ) }