Metamath Proof Explorer


Theorem inintabss

Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion inintabss A x | φ w 𝒫 A | x w = A x φ

Proof

Step Hyp Ref Expression
1 ax-1 u A x φ u A
2 1 anim1i u A x φ u x x φ u A x φ u x
3 elinintab u A x | φ u A x φ u x
4 elinintrab u V u w 𝒫 A | x w = A x φ x φ u A x φ u x
5 4 elv u w 𝒫 A | x w = A x φ x φ u A x φ u x
6 2 3 5 3imtr4i u A x | φ u w 𝒫 A | x w = A x φ
7 6 ssriv A x | φ w 𝒫 A | x w = A x φ