Metamath Proof Explorer


Theorem inintabss

Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion inintabss Ax|φw𝒫A|xw=Axφ

Proof

Step Hyp Ref Expression
1 ax-1 uAxφuA
2 1 anim1i uAxφuxxφuAxφux
3 elinintab uAx|φuAxφux
4 elinintrab uVuw𝒫A|xw=AxφxφuAxφux
5 4 elv uw𝒫A|xw=AxφxφuAxφux
6 2 3 5 3imtr4i uAx|φuw𝒫A|xw=Axφ
7 6 ssriv Ax|φw𝒫A|xw=Axφ