Metamath Proof Explorer


Theorem inintabss

Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020)

Ref Expression
Assertion inintabss ( 𝐴 { 𝑥𝜑 } ) ⊆ { 𝑤 ∈ 𝒫 𝐴 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐴𝑥 ) ∧ 𝜑 ) }

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝑢𝐴 → ( ∃ 𝑥 𝜑𝑢𝐴 ) )
2 1 anim1i ( ( 𝑢𝐴 ∧ ∀ 𝑥 ( 𝜑𝑢𝑥 ) ) → ( ( ∃ 𝑥 𝜑𝑢𝐴 ) ∧ ∀ 𝑥 ( 𝜑𝑢𝑥 ) ) )
3 elinintab ( 𝑢 ∈ ( 𝐴 { 𝑥𝜑 } ) ↔ ( 𝑢𝐴 ∧ ∀ 𝑥 ( 𝜑𝑢𝑥 ) ) )
4 elinintrab ( 𝑢 ∈ V → ( 𝑢 { 𝑤 ∈ 𝒫 𝐴 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐴𝑥 ) ∧ 𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑𝑢𝐴 ) ∧ ∀ 𝑥 ( 𝜑𝑢𝑥 ) ) ) )
5 4 elv ( 𝑢 { 𝑤 ∈ 𝒫 𝐴 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐴𝑥 ) ∧ 𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑𝑢𝐴 ) ∧ ∀ 𝑥 ( 𝜑𝑢𝑥 ) ) )
6 2 3 5 3imtr4i ( 𝑢 ∈ ( 𝐴 { 𝑥𝜑 } ) → 𝑢 { 𝑤 ∈ 𝒫 𝐴 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐴𝑥 ) ∧ 𝜑 ) } )
7 6 ssriv ( 𝐴 { 𝑥𝜑 } ) ⊆ { 𝑤 ∈ 𝒫 𝐴 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐴𝑥 ) ∧ 𝜑 ) }