| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑥 ∈ V |
| 2 |
1
|
inex2 |
⊢ ( 𝐵 ∩ 𝑥 ) ∈ V |
| 3 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝑥 ) ⊆ 𝐵 |
| 4 |
2 3
|
elmapintrab |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐵 ∩ 𝑥 ) ∧ 𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ) ) ) |
| 5 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) |
| 6 |
5
|
imbi2i |
⊢ ( ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ↔ ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) ) |
| 7 |
|
jcab |
⊢ ( ( 𝜑 → ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) ↔ ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ↔ ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ↔ ∀ 𝑥 ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 10 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 11 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ) |
| 12 |
11
|
anbi1i |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 13 |
10 12
|
bitri |
⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 14 |
9 13
|
bitri |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 15 |
14
|
anbi2i |
⊢ ( ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) ) |
| 16 |
|
anabs5 |
⊢ ( ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 17 |
15 16
|
bitri |
⊢ ( ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ ( 𝐵 ∩ 𝑥 ) ) ) ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 18 |
4 17
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑤 ∈ 𝒫 𝐵 ∣ ∃ 𝑥 ( 𝑤 = ( 𝐵 ∩ 𝑥 ) ∧ 𝜑 ) } ↔ ( ( ∃ 𝑥 𝜑 → 𝐴 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) ) |