| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' R |
| 2 |
|
relin2 |
|- ( Rel `' R -> Rel ( R i^i `' R ) ) |
| 3 |
|
ssrel |
|- ( Rel ( R i^i `' R ) -> ( ( R i^i `' R ) C_ _I <-> A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) ) ) |
| 4 |
1 2 3
|
mp2b |
|- ( ( R i^i `' R ) C_ _I <-> A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) ) |
| 5 |
|
elin |
|- ( <. x , y >. e. ( R i^i `' R ) <-> ( <. x , y >. e. R /\ <. x , y >. e. `' R ) ) |
| 6 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
|
vex |
|- y e. _V |
| 9 |
7 8
|
brcnv |
|- ( x `' R y <-> y R x ) |
| 10 |
|
df-br |
|- ( x `' R y <-> <. x , y >. e. `' R ) |
| 11 |
9 10
|
bitr3i |
|- ( y R x <-> <. x , y >. e. `' R ) |
| 12 |
6 11
|
anbi12i |
|- ( ( x R y /\ y R x ) <-> ( <. x , y >. e. R /\ <. x , y >. e. `' R ) ) |
| 13 |
5 12
|
bitr4i |
|- ( <. x , y >. e. ( R i^i `' R ) <-> ( x R y /\ y R x ) ) |
| 14 |
|
df-br |
|- ( x _I y <-> <. x , y >. e. _I ) |
| 15 |
8
|
ideq |
|- ( x _I y <-> x = y ) |
| 16 |
14 15
|
bitr3i |
|- ( <. x , y >. e. _I <-> x = y ) |
| 17 |
13 16
|
imbi12i |
|- ( ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) <-> ( ( x R y /\ y R x ) -> x = y ) ) |
| 18 |
17
|
2albii |
|- ( A. x A. y ( <. x , y >. e. ( R i^i `' R ) -> <. x , y >. e. _I ) <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
| 19 |
4 18
|
bitri |
|- ( ( R i^i `' R ) C_ _I <-> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |