| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
| 3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
| 4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
| 5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
| 6 |
|
ipasslem1.b |
|- B e. X |
| 7 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 8 |
1 2 3 4 5 6
|
ipasslem1 |
|- ( ( N e. NN0 /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| 9 |
|
nnnn0 |
|- ( -u N e. NN -> -u N e. NN0 ) |
| 10 |
1 2 3 4 5 6
|
ipasslem2 |
|- ( ( -u N e. NN0 /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
| 11 |
9 10
|
sylan |
|- ( ( -u N e. NN /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
| 12 |
11
|
adantll |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
| 13 |
|
recn |
|- ( N e. RR -> N e. CC ) |
| 14 |
13
|
negnegd |
|- ( N e. RR -> -u -u N = N ) |
| 15 |
14
|
oveq1d |
|- ( N e. RR -> ( -u -u N S A ) = ( N S A ) ) |
| 16 |
15
|
oveq1d |
|- ( N e. RR -> ( ( -u -u N S A ) P B ) = ( ( N S A ) P B ) ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( ( N S A ) P B ) ) |
| 18 |
14
|
oveq1d |
|- ( N e. RR -> ( -u -u N x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( -u -u N x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
| 20 |
12 17 19
|
3eqtr3d |
|- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| 21 |
8 20
|
jaoian |
|- ( ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| 22 |
7 21
|
sylanb |
|- ( ( N e. ZZ /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |