| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irredn0.i |
|- I = ( Irred ` R ) |
| 2 |
|
irredneg.n |
|- N = ( invg ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
|
simpl |
|- ( ( R e. Ring /\ X e. I ) -> R e. Ring ) |
| 7 |
1 3
|
irredcl |
|- ( X e. I -> X e. ( Base ` R ) ) |
| 8 |
7
|
adantl |
|- ( ( R e. Ring /\ X e. I ) -> X e. ( Base ` R ) ) |
| 9 |
3 4 5 2 6 8
|
ringnegr |
|- ( ( R e. Ring /\ X e. I ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( N ` X ) ) |
| 10 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 11 |
10 5
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 12 |
10 2
|
unitnegcl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Unit ` R ) ) -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
| 13 |
11 12
|
mpdan |
|- ( R e. Ring -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
| 14 |
13
|
adantr |
|- ( ( R e. Ring /\ X e. I ) -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
| 15 |
1 10 4
|
irredrmul |
|- ( ( R e. Ring /\ X e. I /\ ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) e. I ) |
| 16 |
14 15
|
mpd3an3 |
|- ( ( R e. Ring /\ X e. I ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) e. I ) |
| 17 |
9 16
|
eqeltrrd |
|- ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I ) |