Metamath Proof Explorer


Theorem iscld3

Description: A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion iscld3
|- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 cldcls
 |-  ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S )
3 1 clscld
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) )
4 eleq1
 |-  ( ( ( cls ` J ) ` S ) = S -> ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) <-> S e. ( Clsd ` J ) ) )
5 3 4 syl5ibcom
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S -> S e. ( Clsd ` J ) ) )
6 2 5 impbid2
 |-  ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) )