Description: A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |- X = U. J |
|
Assertion | iscld3 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |- X = U. J |
|
2 | cldcls | |- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S ) |
|
3 | 1 | clscld | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) ) |
4 | eleq1 | |- ( ( ( cls ` J ) ` S ) = S -> ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) <-> S e. ( Clsd ` J ) ) ) |
|
5 | 3 4 | syl5ibcom | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S -> S e. ( Clsd ` J ) ) ) |
6 | 2 5 | impbid2 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) ) |