Metamath Proof Explorer


Theorem iscld3

Description: A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006)

Ref Expression
Hypothesis clscld.1 X=J
Assertion iscld3 JTopSXSClsdJclsJS=S

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 cldcls SClsdJclsJS=S
3 1 clscld JTopSXclsJSClsdJ
4 eleq1 clsJS=SclsJSClsdJSClsdJ
5 3 4 syl5ibcom JTopSXclsJS=SSClsdJ
6 2 5 impbid2 JTopSXSClsdJclsJS=S