| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet2.1 |
|- J = ( MetOpen ` D ) |
| 2 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
| 3 |
1
|
cmetcau |
|- ( ( D e. ( CMet ` X ) /\ f e. ( Cau ` D ) ) -> f e. dom ( ~~>t ` J ) ) |
| 4 |
3
|
ex |
|- ( D e. ( CMet ` X ) -> ( f e. ( Cau ` D ) -> f e. dom ( ~~>t ` J ) ) ) |
| 5 |
4
|
ssrdv |
|- ( D e. ( CMet ` X ) -> ( Cau ` D ) C_ dom ( ~~>t ` J ) ) |
| 6 |
2 5
|
jca |
|- ( D e. ( CMet ` X ) -> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) |
| 7 |
|
ssel2 |
|- ( ( ( Cau ` D ) C_ dom ( ~~>t ` J ) /\ f e. ( Cau ` D ) ) -> f e. dom ( ~~>t ` J ) ) |
| 8 |
7
|
a1d |
|- ( ( ( Cau ` D ) C_ dom ( ~~>t ` J ) /\ f e. ( Cau ` D ) ) -> ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 9 |
8
|
ralrimiva |
|- ( ( Cau ` D ) C_ dom ( ~~>t ` J ) -> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 10 |
9
|
adantl |
|- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 12 |
|
1zzd |
|- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> 1 e. ZZ ) |
| 13 |
|
simpl |
|- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> D e. ( Met ` X ) ) |
| 14 |
11 1 12 13
|
iscmet3 |
|- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) ) |
| 15 |
10 14
|
mpbird |
|- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> D e. ( CMet ` X ) ) |
| 16 |
6 15
|
impbii |
|- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) |