Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( o = .o. /\ m = M ) -> m = M ) |
2 |
|
oveq |
|- ( o = .o. -> ( x o y ) = ( x .o. y ) ) |
3 |
|
oveq |
|- ( o = .o. -> ( y o x ) = ( y .o. x ) ) |
4 |
2 3
|
eqeq12d |
|- ( o = .o. -> ( ( x o y ) = ( y o x ) <-> ( x .o. y ) = ( y .o. x ) ) ) |
5 |
4
|
adantr |
|- ( ( o = .o. /\ m = M ) -> ( ( x o y ) = ( y o x ) <-> ( x .o. y ) = ( y .o. x ) ) ) |
6 |
1 5
|
raleqbidv |
|- ( ( o = .o. /\ m = M ) -> ( A. y e. m ( x o y ) = ( y o x ) <-> A. y e. M ( x .o. y ) = ( y .o. x ) ) ) |
7 |
1 6
|
raleqbidv |
|- ( ( o = .o. /\ m = M ) -> ( A. x e. m A. y e. m ( x o y ) = ( y o x ) <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) |
8 |
|
df-comlaw |
|- comLaw = { <. o , m >. | A. x e. m A. y e. m ( x o y ) = ( y o x ) } |
9 |
7 8
|
brabga |
|- ( ( .o. e. V /\ M e. W ) -> ( .o. comLaw M <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) |