Metamath Proof Explorer


Theorem iscomlaw

Description: The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion iscomlaw Could not format assertion : No typesetting found for |- ( ( .o. e. V /\ M e. W ) -> ( .o. comLaw M <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 simpr Could not format ( ( o = .o. /\ m = M ) -> m = M ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> m = M ) with typecode |-
2 oveq Could not format ( o = .o. -> ( x o y ) = ( x .o. y ) ) : No typesetting found for |- ( o = .o. -> ( x o y ) = ( x .o. y ) ) with typecode |-
3 oveq Could not format ( o = .o. -> ( y o x ) = ( y .o. x ) ) : No typesetting found for |- ( o = .o. -> ( y o x ) = ( y .o. x ) ) with typecode |-
4 2 3 eqeq12d Could not format ( o = .o. -> ( ( x o y ) = ( y o x ) <-> ( x .o. y ) = ( y .o. x ) ) ) : No typesetting found for |- ( o = .o. -> ( ( x o y ) = ( y o x ) <-> ( x .o. y ) = ( y .o. x ) ) ) with typecode |-
5 4 adantr Could not format ( ( o = .o. /\ m = M ) -> ( ( x o y ) = ( y o x ) <-> ( x .o. y ) = ( y .o. x ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( ( x o y ) = ( y o x ) <-> ( x .o. y ) = ( y .o. x ) ) ) with typecode |-
6 1 5 raleqbidv Could not format ( ( o = .o. /\ m = M ) -> ( A. y e. m ( x o y ) = ( y o x ) <-> A. y e. M ( x .o. y ) = ( y .o. x ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( A. y e. m ( x o y ) = ( y o x ) <-> A. y e. M ( x .o. y ) = ( y .o. x ) ) ) with typecode |-
7 1 6 raleqbidv Could not format ( ( o = .o. /\ m = M ) -> ( A. x e. m A. y e. m ( x o y ) = ( y o x ) <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( A. x e. m A. y e. m ( x o y ) = ( y o x ) <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) with typecode |-
8 df-comlaw comLaw = o m | x m y m x o y = y o x
9 7 8 brabga Could not format ( ( .o. e. V /\ M e. W ) -> ( .o. comLaw M <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) : No typesetting found for |- ( ( .o. e. V /\ M e. W ) -> ( .o. comLaw M <-> A. x e. M A. y e. M ( x .o. y ) = ( y .o. x ) ) ) with typecode |-