| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdivrng1.1 |
|- G = ( 1st ` R ) |
| 2 |
|
isdivrng1.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
isdivrng1.3 |
|- Z = ( GId ` G ) |
| 4 |
|
isdivrng1.4 |
|- X = ran G |
| 5 |
|
df-drngo |
|- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
| 6 |
5
|
relopabiv |
|- Rel DivRingOps |
| 7 |
|
1st2nd |
|- ( ( Rel DivRingOps /\ R e. DivRingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 8 |
6 7
|
mpan |
|- ( R e. DivRingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 9 |
|
relrngo |
|- Rel RingOps |
| 10 |
|
1st2nd |
|- ( ( Rel RingOps /\ R e. RingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 11 |
9 10
|
mpan |
|- ( R e. RingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 12 |
11
|
adantr |
|- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 13 |
1 2
|
opeq12i |
|- <. G , H >. = <. ( 1st ` R ) , ( 2nd ` R ) >. |
| 14 |
13
|
eqeq2i |
|- ( R = <. G , H >. <-> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 15 |
2
|
fvexi |
|- H e. _V |
| 16 |
|
isdivrngo |
|- ( H e. _V -> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
| 17 |
15 16
|
ax-mp |
|- ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
| 18 |
3
|
sneqi |
|- { Z } = { ( GId ` G ) } |
| 19 |
4 18
|
difeq12i |
|- ( X \ { Z } ) = ( ran G \ { ( GId ` G ) } ) |
| 20 |
19 19
|
xpeq12i |
|- ( ( X \ { Z } ) X. ( X \ { Z } ) ) = ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) |
| 21 |
20
|
reseq2i |
|- ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) |
| 22 |
21
|
eleq1i |
|- ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp <-> ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) |
| 23 |
22
|
anbi2i |
|- ( ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
| 24 |
17 23
|
bitr4i |
|- ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
| 25 |
|
eleq1 |
|- ( R = <. G , H >. -> ( R e. DivRingOps <-> <. G , H >. e. DivRingOps ) ) |
| 26 |
|
eleq1 |
|- ( R = <. G , H >. -> ( R e. RingOps <-> <. G , H >. e. RingOps ) ) |
| 27 |
26
|
anbi1d |
|- ( R = <. G , H >. -> ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) |
| 28 |
25 27
|
bibi12d |
|- ( R = <. G , H >. -> ( ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) <-> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) ) |
| 29 |
24 28
|
mpbiri |
|- ( R = <. G , H >. -> ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) |
| 30 |
14 29
|
sylbir |
|- ( R = <. ( 1st ` R ) , ( 2nd ` R ) >. -> ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) |
| 31 |
8 12 30
|
pm5.21nii |
|- ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |