| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kgentop |
|- ( J e. ran kGen -> J e. Top ) |
| 2 |
|
kgenidm |
|- ( J e. ran kGen -> ( kGen ` J ) = J ) |
| 3 |
|
eqimss |
|- ( ( kGen ` J ) = J -> ( kGen ` J ) C_ J ) |
| 4 |
2 3
|
syl |
|- ( J e. ran kGen -> ( kGen ` J ) C_ J ) |
| 5 |
1 4
|
jca |
|- ( J e. ran kGen -> ( J e. Top /\ ( kGen ` J ) C_ J ) ) |
| 6 |
|
simpr |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> ( kGen ` J ) C_ J ) |
| 7 |
|
kgenss |
|- ( J e. Top -> J C_ ( kGen ` J ) ) |
| 8 |
7
|
adantr |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> J C_ ( kGen ` J ) ) |
| 9 |
6 8
|
eqssd |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> ( kGen ` J ) = J ) |
| 10 |
|
kgenf |
|- kGen : Top --> Top |
| 11 |
|
ffn |
|- ( kGen : Top --> Top -> kGen Fn Top ) |
| 12 |
10 11
|
ax-mp |
|- kGen Fn Top |
| 13 |
|
fnfvelrn |
|- ( ( kGen Fn Top /\ J e. Top ) -> ( kGen ` J ) e. ran kGen ) |
| 14 |
12 13
|
mpan |
|- ( J e. Top -> ( kGen ` J ) e. ran kGen ) |
| 15 |
14
|
adantr |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> ( kGen ` J ) e. ran kGen ) |
| 16 |
9 15
|
eqeltrrd |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> J e. ran kGen ) |
| 17 |
5 16
|
impbii |
|- ( J e. ran kGen <-> ( J e. Top /\ ( kGen ` J ) C_ J ) ) |