| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kgentop |
⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) |
| 2 |
|
kgenidm |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |
| 3 |
|
eqimss |
⊢ ( ( 𝑘Gen ‘ 𝐽 ) = 𝐽 → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 5 |
1 4
|
jca |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 7 |
|
kgenss |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 9 |
6 8
|
eqssd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |
| 10 |
|
kgenf |
⊢ 𝑘Gen : Top ⟶ Top |
| 11 |
|
ffn |
⊢ ( 𝑘Gen : Top ⟶ Top → 𝑘Gen Fn Top ) |
| 12 |
10 11
|
ax-mp |
⊢ 𝑘Gen Fn Top |
| 13 |
|
fnfvelrn |
⊢ ( ( 𝑘Gen Fn Top ∧ 𝐽 ∈ Top ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
| 14 |
12 13
|
mpan |
⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
| 16 |
9 15
|
eqeltrrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → 𝐽 ∈ ran 𝑘Gen ) |
| 17 |
5 16
|
impbii |
⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |