Metamath Proof Explorer


Theorem isncvsngpd

Description: Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v
|- V = ( Base ` W )
isncvsngp.n
|- N = ( norm ` W )
isncvsngp.s
|- .x. = ( .s ` W )
isncvsngp.f
|- F = ( Scalar ` W )
isncvsngp.k
|- K = ( Base ` F )
isncvsngpd.v
|- ( ph -> W e. CVec )
isncvsngpd.g
|- ( ph -> W e. NrmGrp )
isncvsngpd.t
|- ( ( ph /\ ( x e. V /\ k e. K ) ) -> ( N ` ( k .x. x ) ) = ( ( abs ` k ) x. ( N ` x ) ) )
Assertion isncvsngpd
|- ( ph -> W e. ( NrmVec i^i CVec ) )

Proof

Step Hyp Ref Expression
1 isncvsngp.v
 |-  V = ( Base ` W )
2 isncvsngp.n
 |-  N = ( norm ` W )
3 isncvsngp.s
 |-  .x. = ( .s ` W )
4 isncvsngp.f
 |-  F = ( Scalar ` W )
5 isncvsngp.k
 |-  K = ( Base ` F )
6 isncvsngpd.v
 |-  ( ph -> W e. CVec )
7 isncvsngpd.g
 |-  ( ph -> W e. NrmGrp )
8 isncvsngpd.t
 |-  ( ( ph /\ ( x e. V /\ k e. K ) ) -> ( N ` ( k .x. x ) ) = ( ( abs ` k ) x. ( N ` x ) ) )
9 8 ralrimivva
 |-  ( ph -> A. x e. V A. k e. K ( N ` ( k .x. x ) ) = ( ( abs ` k ) x. ( N ` x ) ) )
10 1 2 3 4 5 isncvsngp
 |-  ( W e. ( NrmVec i^i CVec ) <-> ( W e. CVec /\ W e. NrmGrp /\ A. x e. V A. k e. K ( N ` ( k .x. x ) ) = ( ( abs ` k ) x. ( N ` x ) ) ) )
11 6 7 9 10 syl3anbrc
 |-  ( ph -> W e. ( NrmVec i^i CVec ) )