Metamath Proof Explorer


Theorem isncvsngpd

Description: Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v 𝑉 = ( Base ‘ 𝑊 )
isncvsngp.n 𝑁 = ( norm ‘ 𝑊 )
isncvsngp.s · = ( ·𝑠𝑊 )
isncvsngp.f 𝐹 = ( Scalar ‘ 𝑊 )
isncvsngp.k 𝐾 = ( Base ‘ 𝐹 )
isncvsngpd.v ( 𝜑𝑊 ∈ ℂVec )
isncvsngpd.g ( 𝜑𝑊 ∈ NrmGrp )
isncvsngpd.t ( ( 𝜑 ∧ ( 𝑥𝑉𝑘𝐾 ) ) → ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁𝑥 ) ) )
Assertion isncvsngpd ( 𝜑𝑊 ∈ ( NrmVec ∩ ℂVec ) )

Proof

Step Hyp Ref Expression
1 isncvsngp.v 𝑉 = ( Base ‘ 𝑊 )
2 isncvsngp.n 𝑁 = ( norm ‘ 𝑊 )
3 isncvsngp.s · = ( ·𝑠𝑊 )
4 isncvsngp.f 𝐹 = ( Scalar ‘ 𝑊 )
5 isncvsngp.k 𝐾 = ( Base ‘ 𝐹 )
6 isncvsngpd.v ( 𝜑𝑊 ∈ ℂVec )
7 isncvsngpd.g ( 𝜑𝑊 ∈ NrmGrp )
8 isncvsngpd.t ( ( 𝜑 ∧ ( 𝑥𝑉𝑘𝐾 ) ) → ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁𝑥 ) ) )
9 8 ralrimivva ( 𝜑 → ∀ 𝑥𝑉𝑘𝐾 ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁𝑥 ) ) )
10 1 2 3 4 5 isncvsngp ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀ 𝑥𝑉𝑘𝐾 ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁𝑥 ) ) ) )
11 6 7 9 10 syl3anbrc ( 𝜑𝑊 ∈ ( NrmVec ∩ ℂVec ) )