Step |
Hyp |
Ref |
Expression |
1 |
|
isncvsngp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isncvsngp.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
3 |
|
isncvsngp.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
isncvsngp.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
isncvsngp.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
isncvsngpd.v |
⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) |
7 |
|
isncvsngpd.g |
⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
8 |
|
isncvsngpd.t |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
9 |
8
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑘 ∈ 𝐾 ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
10 |
1 2 3 4 5
|
isncvsngp |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑘 ∈ 𝐾 ( 𝑁 ‘ ( 𝑘 · 𝑥 ) ) = ( ( abs ‘ 𝑘 ) · ( 𝑁 ‘ 𝑥 ) ) ) ) |
11 |
6 7 9 10
|
syl3anbrc |
⊢ ( 𝜑 → 𝑊 ∈ ( NrmVec ∩ ℂVec ) ) |