Metamath Proof Explorer


Theorem isncvsngpd

Description: Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v V=BaseW
isncvsngp.n N=normW
isncvsngp.s ·˙=W
isncvsngp.f F=ScalarW
isncvsngp.k K=BaseF
isncvsngpd.v φWℂVec
isncvsngpd.g φWNrmGrp
isncvsngpd.t φxVkKNk·˙x=kNx
Assertion isncvsngpd φWNrmVecℂVec

Proof

Step Hyp Ref Expression
1 isncvsngp.v V=BaseW
2 isncvsngp.n N=normW
3 isncvsngp.s ·˙=W
4 isncvsngp.f F=ScalarW
5 isncvsngp.k K=BaseF
6 isncvsngpd.v φWℂVec
7 isncvsngpd.g φWNrmGrp
8 isncvsngpd.t φxVkKNk·˙x=kNx
9 8 ralrimivva φxVkKNk·˙x=kNx
10 1 2 3 4 5 isncvsngp WNrmVecℂVecWℂVecWNrmGrpxVkKNk·˙x=kNx
11 6 7 9 10 syl3anbrc φWNrmVecℂVec