Metamath Proof Explorer


Theorem ncvsi

Description: The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v V = Base W
isncvsngp.n N = norm W
isncvsngp.s · ˙ = W
isncvsngp.f F = Scalar W
isncvsngp.k K = Base F
ncvsi.m - ˙ = - W
ncvsi.0 0 ˙ = 0 W
Assertion ncvsi W NrmVec ℂVec W ℂVec N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x

Proof

Step Hyp Ref Expression
1 isncvsngp.v V = Base W
2 isncvsngp.n N = norm W
3 isncvsngp.s · ˙ = W
4 isncvsngp.f F = Scalar W
5 isncvsngp.k K = Base F
6 ncvsi.m - ˙ = - W
7 ncvsi.0 0 ˙ = 0 W
8 1 2 3 4 5 isncvsngp W NrmVec ℂVec W ℂVec W NrmGrp x V k K N k · ˙ x = k N x
9 simp1 W ℂVec W NrmGrp x V k K N k · ˙ x = k N x W ℂVec
10 1 2 nmf W NrmGrp N : V
11 10 3ad2ant2 W ℂVec W NrmGrp x V k K N k · ˙ x = k N x N : V
12 1 2 6 7 ngpi W NrmGrp W Grp N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y
13 r19.26 x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y x V k K N k · ˙ x = k N x
14 simpll N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x N x = 0 x = 0 ˙
15 simplr N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x y V N x - ˙ y N x + N y
16 simpr N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x k K N k · ˙ x = k N x
17 14 15 16 3jca N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
18 17 ralimi x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
19 13 18 sylbir x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y x V k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
20 19 ex x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y x V k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
21 20 3ad2ant3 W Grp N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y x V k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
22 12 21 syl W NrmGrp x V k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
23 22 imp W NrmGrp x V k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
24 23 3adant1 W ℂVec W NrmGrp x V k K N k · ˙ x = k N x x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
25 9 11 24 3jca W ℂVec W NrmGrp x V k K N k · ˙ x = k N x W ℂVec N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x
26 8 25 sylbi W NrmVec ℂVec W ℂVec N : V x V N x = 0 x = 0 ˙ y V N x - ˙ y N x + N y k K N k · ˙ x = k N x