Metamath Proof Explorer


Theorem ncvsprp

Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V = Base W
ncvsprp.n N = norm W
ncvsprp.s · ˙ = W
ncvsprp.f F = Scalar W
ncvsprp.k K = Base F
Assertion ncvsprp W NrmVec ℂVec A K B V N A · ˙ B = A N B

Proof

Step Hyp Ref Expression
1 ncvsprp.v V = Base W
2 ncvsprp.n N = norm W
3 ncvsprp.s · ˙ = W
4 ncvsprp.f F = Scalar W
5 ncvsprp.k K = Base F
6 elin W NrmVec ℂVec W NrmVec W ℂVec
7 nvcnlm W NrmVec W NrmMod
8 7 adantr W NrmVec W ℂVec W NrmMod
9 6 8 sylbi W NrmVec ℂVec W NrmMod
10 eqid norm F = norm F
11 1 2 3 4 5 10 nmvs W NrmMod A K B V N A · ˙ B = norm F A N B
12 9 11 syl3an1 W NrmVec ℂVec A K B V N A · ˙ B = norm F A N B
13 id W ℂVec W ℂVec
14 13 cvsclm W ℂVec W CMod
15 6 14 simplbiim W NrmVec ℂVec W CMod
16 4 5 clmabs W CMod A K A = norm F A
17 15 16 sylan W NrmVec ℂVec A K A = norm F A
18 17 3adant3 W NrmVec ℂVec A K B V A = norm F A
19 18 eqcomd W NrmVec ℂVec A K B V norm F A = A
20 19 oveq1d W NrmVec ℂVec A K B V norm F A N B = A N B
21 12 20 eqtrd W NrmVec ℂVec A K B V N A · ˙ B = A N B